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ABSTRACT

The demand of subseasonal predictions (from one to about four weeks in advance) has been consid-

erably increasing as these predictions can potentially help prepare for the occurrence of high-impact

events such as heat or cold waves that affect both social and economic activities. This study aims to assess

the subseasonal temperature prediction quality of the European Centre for Medium-Range Weather

Forecasts (ECMWF) against the Japan Meteorological Agency reanalyses. Two consecutive weeks of

July 2017 were analyzed, which presented anomalously cold and warm conditions over central South

America. The quality of 20 years of hindcasts for the two investigated weeks was compared to that for

similar weeks during the JJA season and of 3 years of real-time forecasts for the same season.

Anomalously cold temperatures observed during the week of 17–23 July 2017 were well predicted one

week in advance. Moreover, the warm anomalies observed during the following week of 24–30 July 2017

were well predicted two weeks in advance. Higher linear association and discrimination (ability to

distinguish events from nonevents), but reduced reliability, was found for the 20 years of hindcasts for

the target week than for the hindcasts produced for all of the JJA season. In addition, the real-time

forecasts showed generally better performance over some regions of South America than the hindcasts.
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The assessment provides robust evidence about temperature prediction quality to build confidence in

regional subseasonal forecasts as well as to identify regions in which the predictions have better

performance.

1. Introduction

The interest in predictingwell in advance cold andwarm

weekly conditions, and even cold and heat waves, has been

increasing in recent years. In this way, one of the main

goals of the Subseasonal to Seasonal Prediction project

(S2S; Vitart et al. 2017) is to diagnose and improve forecast

skill and understand the sources of predictability on the

S2S time scale with special emphasis on the prediction of

high-impact events. Heat waves are one of these events

that have societal impacts on, for example, public health,

including loss of life, and on the agriculture sector, as

heat waves condition irrigation schedules and appli-

cation of pesticide or fertilizers (White et al. 2017).

The forecast quality assessment of heat waves on

subseasonal time scales has been recently addressed in

several studies motivated by the S2S Project. Hudson

et al. (2016) considered the Australian Bureau of

Meteorology (BoM) model (POAMA-2) to evaluate

its performance in forecasting the three most extreme

heat events over Australia in 2013. Ardilouze et al.

(2017) assessed the performance of real-time Météo-
France model (CNRM-CM) forecasts for an intense

heat wave that struck west Europe in early July 2015

and found limited utility of the forecast system beyond

12 days. Using the CNRM-CM model retrospective

forecasts, that is, forecasts produced after the events

were observed and that are also known as hindcasts,

Batté et al. (2018) studied the prediction quality of bo-

real spring heat wave events overWestAfrica and Sahel.

Over South America, Osman and Alvarez (2018) eval-

uated two models from the S2S database, the POAMA

and BCC-CPS models, from the BoM and the Chinese

Meteorological Agency, respectively, in predicting

an intense heat wave during December 2013, finding

promising performance of probabilistic forecasts for

leads longer than a week. Other studies for the South

American region focused on the subseasonal precip-

itation forecast quality assessment or on extreme

rainfall event analysis (Hirata and Grimm 2018; Doss-

Gollin et al. 2018;Coelho et al. 2018).However, a systematic

subseasonal temperature forecast quality assessment

focused on South America has not been done yet and it

still remains largely undocumented.

During July 2017, two consecutive weeks showed re-

markably contrasting temperature anomalies over cen-

tral and southeastern South America (Figs. 2e and 9e).

As an example of the daily evolution of temperature

anomalies, Fig. 1a shows the daily mean temperature

anomaly time series during July 2017 for three meteo-

rological stations: Resistencia, in central-northern

Argentina, Sao Luiz Gonzaga in south Brazil, and Sao

Paulo in southeast Brazil (Fig. 1b). A sharp temperature

decrease started between 16 and 18 July 2017, and the

anomaly remained negative during 6 days in Resistencia

and Sao Luiz Gonzaga and during 3 days in Sao Paulo.

Moreover, 3 days in Resistencia and Sao Luiz Gonzaga

recorded temperatures below one standard deviation

as well as two days in the Sao Paulo. The spatial distri-

bution of temperature anomalies for 17–23 July (Fig. 2e)

shows that negative anomalies covered a large region

over most central and southeastern South America and

contrasting with positive anomalies over the Patagonia

region in southern South America. On 23 or 24 July 2017,

above-normal temperatures were restored in Resistencia

and Sao Luiz Gonzaga, respectively. Such anomalously

warm conditions lasted for the whole week with every

day surpassing the one standard deviation threshold

(Fig. 1a). Figure 9e shows that the warm anomalies ex-

tended across central and southern South America, be-

ing most intense over central and northern Argentina,

Uruguay, Paraguay, and southern Brazil.

From Fig. 1 the alert reader might wonder whether

the colder-than-normal week of 17–23 July 2017 was

actually a disruption of a long-lasting warm event, as the

previous and following weeks showed intense warm

anomalies over northern Argentina and South Brazil.

We then computed the temperature anomalies for each

of the weeks analyzed along the June–July–August

(JJA) 2017 season (see Fig. S1 in the online supple-

mental material) and found that along the 3 previous

weeks to 17–23 July, positive temperature anomalies

prevailed over the region. Moreover, most of the JJA

weeks resulted in warmer-than-normal conditions over

the region comprising northern Argentina, Paraguay,

and southern Brazil, and that positive anomaly stands

out when computing the JJA seasonal average, together

with a less intense warm anomaly over the Brazilian

Amazon region (Fig. S1).

One of the sources of predictability on the sub-

seasonal time scale is the Madden–Julian oscillation

(MJO; Madden and Julian 1994). Along the second

fortnight of July 2017 here analyzed, the RMM index

(Wheeler and Hendon 2004) reflected a marginally ac-

tive MJO, with amplitudes larger than 0.75 during most

1872 WEATHER AND FORECAST ING VOLUME 35

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/35/5/1871/4989683/w

afd190200.pdf by guest on 22 August 2020



of the period, and spanning MJO phases 3 and 4 during

the first week andmostly 5 and 6 during the second week

(not shown). The upper-level circulation response (not

shown) resulted in a similar pattern over the Pacific

Ocean and South America to the composites presented

in Alvarez et al. (2016), and therefore the MJO might

have had an influence in the circulation anomalies and

ultimately over the temperature anomalies.

FIG. 1. (a) Daily temperature anomaly time series for July 2017 for Resistencia (87155; 27.458S, 598W), Sao Luiz

Gonzaga (83907; 28.48S, 55.018W), and Sao Paulo (83781; 23.58S, 46.618W) meteorological stations. Anomalies were

computed with respect to the 1980–2016, 31-point smoothed daily climatological mean. White circles represent days

with temperature anomalies in magnitude larger than one standard deviation for each station, with the standard

deviation computed using the historical daily temperature values for the 1980–2016 period. The vertical blue dashed

lines mark the cold week period from 17 to 23 Jul 2017. The vertical red dashed lines mark the warm week period

from 24 to 30 Jul 2017. (b) Locations of the weather stations used in (a).

FIG. 2. ECMWF ensemblemean real-time forecast temperature anomalies for the target week of interest (17–23 Jul 2017) initialized on

the (a) 22 Jun 2017, (b) 29 Jun 2017, (c) 6 Jul 2017, and (d) 13 Jul 2017, representing forecasts produced from 4 to 1 week in advance as

described in the text. Anomalies were calculated with respect to the 1997–2016 hindcast period (20 years). (e) Observed temperature

anomalies for the week 17–23 Jul 2017 with respect to the 1995–2017. ECMWF forecasts probabilities for the occurrence of negative

temperature anomaly during the target week of interest (17–23 Jul 2017) initialized on the (f) 22 Jun 2017, (g) 29 Jun 2017, (h) 6 Jul 2017,

and (i) 13 Jul 2017, derived from 51 ensemble members. (j) Binary observation indicating where a negative (blue) or a positive (red)

temperature anomaly was recorded during the week.
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Themain objective of this paper is to assess the quality

of the subseasonal temperature forecasts for this se-

quence of anomalously cold and warm weeks of July

2017. To achieve this objective, the verification frame-

work proposed by Coelho et al. (2018) is used. This

framework provides verification information together

with forecast information at the time of issuing the

forecast for a particular week of interest. Particularly,

we seek to answer the following questions: How many

weeks in advance were the observed temperature anom-

alies predicted? Do retrospective forecasts produced

for the target weeks have better performance than

aggregated retrospective forecasts produced for sim-

ilar weeks during the JJA season? And how does

retrospective forecast performance compare to real-

time forecast performance? Retrospective and real-time

subseasonal forecasts of the European Centre for

Medium-RangeWeather Forecasts (ECMWF)model are

used in this study because this state-of-the-art model

provides a reasonably large ensemble size in the

hindcast period and an even larger for the real-time

forecasts.

This document is organized as follows: section 2 de-

scribes the data used and summarizes the verification

framework used in this study. Section 3 presents the

verification results for both the cold and the warm week

here investigated. Finally, a discussion and summary is

presented in section 4.

2. Data and methodology

The ECMWF subseasonal forecasts available through

the S2S prediction database (Vitart et al. 2017) were

used in this study. The model provides an ensemble of

real-time forecasts composed by 51 members for the

following 46 days after the initialization date since

2015, which are sometimes referred as ‘‘near-real-time

forecasts’’ as they are made available after 3 weeks of

issued. For each version of the model, which is updated

every year, a set of retrospective forecasts (hindcasts)

for the previous 20 years is also provided, but with a re-

duced number of ensemble members (11 ensemble mem-

bers). The ECMWF model versions used in this study are

as follows: CY41R1 for 2015 real-time forecasts and re-

spective hindcasts to compute the climatology, CY41R2

for 2016 real-time forecasts and respective hindcasts to

compute the climatology, and CY43R1 for June and

CY43R3 since 11 July for 2017 real-time forecasts and

respective hindcasts to compute the climatology. The

hindcast evaluationwas done using the 2017 versions of the

model, which were operational until June 2018.

The ECMWF forecasts and hindcasts are initialized

on Mondays and Thursdays of every week, but in this

study only the Thursday initializations are used in as

in Coelho et al. (2018). Following Weigel et al. (2008),

Vitart and Molteni (2010) and Coelho et al. (2018),

in this study we define the first week considering

forecast/hindcast days 5–11, the second week as

forecast/hindcast days 12–18, forecast/hindcast days

19–25 define the third week, and forecast/hindcast

days 26–34 define the fourth week. These 4 weeks are

referred to through the text of the manuscript as

forecasts/hindcasts produced from one to four weeks

in advance. As discussed in Coelho et al. (2018) the first

four forecast/hindcast days after the initialization date are

disregarded because these are considered daily medium-

range forecast on the weather time scale and here the in-

terest is on the extended-range (subseasonal) time scale.

All daily forecasts and hindcasts were weekly aver-

aged (nonoverlapping).Weekly anomalies for each real-

time forecast start date were computed with respect to

the climatology of the same start date of the 20-yr

weekly hindcasts. Also, the weekly hindcasts anoma-

lies for each start date were computed with respect to

the climatology of the same start date and the same set

of 20-yr weekly hindcasts in a cross-validation (i.e.,

leaving one year out) framework.

Two target weeks were particularly analyzed, fol-

lowing what was described in the previous section and

choosing the initialization dates according to the avail-

able real-time and associated retrospective forecasts.

First, the week from Monday 17 July to Sunday 23 July

2017 was chosen, when intense cold anomalies were

observed in central South America (Fig. 2e). Then, the

week from Monday 24 July to Sunday 30 July 2017 was

analyzed, during which warm anomalies extended

through central and northern Argentina, Paraguay,

Bolivia, Uruguay, and southern Brazil (Fig. 9e). Tables 1

and 2 show for each of these two target weeks, the ini-

tialization date, week number, valid days of forecasts,

and days in advance in which the forecasts were issued.

To perform the verification study, the Japanese

Meteorological Agency (JMA) 55-year Reanalysis

(JRA-55) project (Kobayashi et al. 2015), postprocessed

with a resolution of 1.258 (JapanMeteorological Agency

2013) were considered as observational reference. They

were linearly interpolated to the same 1.58 3 1.58 grid
in latitude and longitude as the ECMWF model. The

verification framework proposed by Coelho et al.

(2018), designed to assess hindcast and real-time fore-

cast quality, was followed in this study. In this frame-

work, three information levels are defined:

1) Target week hindcast verification: It provides a qual-

ity assessment of the predictions (11 ensemble mem-

bers) produced for the target weeks (17–23 July and
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24–30 July), from one to four weeks in advance,

and based on the weeks available in the hindcasts

(one for each hindcast year). Therefore, in this first

verification level, the sample size is limited to the

number of years for which hindcasts were produced

(20 years).

2) All-season hindcast verification: The second verifica-

tion level considers hindcasts (11 ensemble mem-

bers) produced in all Thursdays start dates within

the JJA season (14 Thursday start dates—of the

ECMWF model version of 2017—over 20 years of

hindcasts leading to a sample size equal to 280). This

sample is considerably large and therefore allows a

robust hindcast quality assessment.

3) All-season real-time forecast verification: The third

verification level consists in aggregating the forecasts

(51 ensemble members) produced on Thursdays

during the JJA season and has a sample size equal to

40 (13 Thursdays for the 2015 and 2016 versions, and

14 Thursdays for the 2017 version). ECMWF en-

semble mean anomalies for this level are computed

using three different sets of hindcasts as follows:

1995–2014 hindcasts for the real-time forecast for

2015, 1996–2015 hindcasts for the real-time forecast

for 2016, and 1997–2016 hindcasts for the real-time

forecast for 2017, all representing the 20 years prior

to the forecast year for which hindcasts were pro-

duced with themodel versions available in 2015, 2016

and 2017, respectively.

In the all-season hindcast and real-time forecast ver-

ification levels, all Thursdays start dates within the JJA

season are used. Even though this means that some of

the verifying weeks (those start dates near the end of

August) do not fall within JJA, we consider this does not

affect the results considerably, as September is a month

usually considered within the extended winter season

when separating the year in two halves and the summer

circulation is yet not established. We disregarded the

option of evaluating only weeks of forecast within JJA

to avoid the reduction of the sample size for the

longer leads.

In each of the three levels of verification, the ensemble

mean is used to perform the deterministic assessment

and all the ensemble members are used to compute

probabilities of the event of interest when performing

the probabilistic assessment. The purpose of such a

three levels verification framework is to provide sup-

porting verification information in the form of maps and

graphics to be examined together with the forecast maps

at the time of issuing the forecast for the particular week

of interest.

Following Coelho et al. (2018) a selection of metrics

was used to evaluate some of the most fundamental

forecast quality attributes. These include the correla-

tion, given by the linear Pearson correlation coefficient

to assess the strength of linear association between the

ensemble mean forecast and the observed anomalies.

The correlation coefficient was tested using a two-tailed

Student’s t test, reducing the sample size based on

autocorrelation of the observations using the effec-

tive sample size proposed by Wilks (2011). Also, the

mean squared error skill score,MSSS5 (12MSE)/MSEc,

is used to assess deterministic skill with respect to

climatology, where MSE is the mean squared error of

the predicted ensemble mean temperature anoma-

lies computed at each grid point over the available

hindcast/forecast period and MSEc is the mean squared

error for a reference prediction. The constant climato-

logical (null) temperature anomaly prediction was used

TABLE 1. For the target week of 17–23 Jul 2017, their associated week number, initialization date, valid days of the forecast, and days in

advance in which the first day of that week was forecast.

Week No. Initialization date Valid week Valid days Days in advance

1 Thursday 13 Jul 2017 Monday 17 Jul–Sunday 23 Jul 5–11 4

2 Thursday 6 Jul 2017 Monday 17 Jul–Sunday 23 Jul 12–18 11

3 Thursday 29 Jun 2017 Monday 17 Jul–Sunday 23 Jul 19–25 18

4 Thursday 22 Jun 2017 Monday 17 Jul–Sunday 23 Jul 26–32 25

TABLE 2. For the target week of 24–30 Jul 2017, their associated week number, initialization date, valid days of the forecast, and days in

advance in which the first day of that week was forecast.

Week No. Initialization date Valid week Valid days Days in advance

1 Thursday 20 Jul 2017 Monday 24 Jul–Sunday 30 Jul 5–11 4

2 Thursday 13 Jul 2017 Monday 24 Jul–Sunday 30 Jul 12–18 11

3 Thursday 6 Jul 2017 Monday 24 Jul–Sunday 30 Jul 19–25 18

4 Thursday 29 Jun 2017 Monday 24 Jul–Sunday 30 Jul 26–32 25
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as reference in this paper. Moreover, a ratio of standard

deviations was computed to assess the amplitude error

of the ensemble mean predictions. The ensemble mean

anomaly standard deviation is defined as the standard

deviation among the ensemble mean of the tempera-

ture anomaly hindcast/forecast for each grid point

and lead time. The observed standard deviation is

computed among the observed temperature anomaly

for every grid point for the 20 years of hindcasts or

3 years of real-time forecasts, according to the level

of verification. The ratio between this two is used. This

metric is used to complement the linear association

assessment provided by the correlation between the

ensemble mean forecast anomalies and the observed

anomalies, as this ratio is part of one of the components

of the MSSS decomposition.

The relative operating characteristic (ROC) curves of

the probabilistic predictions for the event negative

temperature anomaly collected over all SouthAmerican

grid points were also used. The aim is to assess overall

discrimination (i.e., ability to successfully distinguish

events from nonevents) after aggregating all available

hindcasts/forecasts in space and time. Maps for the area

under the ROC curve are also presented, which together

with its p value were computed using NCAR’s R veri-

fication package, which follows Mason and Graham

(2002) using the Mann–Whitney U statistic to assess

statistical significance. Last, reliability diagrams for en-

semble derived probabilistic predictions issued for the

event negative temperature anomaly collected over

all South American grid points were computed with the

aim of assessing reliability (i.e., how well calibrated

the issued probabilities are) and resolution (i.e., how

the frequency of occurrence of the event differs as the

issued probability changes) after aggregating all avail-

able hindcasts/forecasts in space and time.

3. Results

a. Cold week: 17–23 July

During the week of 17–23 July cold anomalies were

observed in eastern-central and northern Argentina, as

well as in Uruguay, Paraguay, Bolivia, and a large por-

tion of Brazil, while warm anomalies were observed in

the Patagonia region of Argentina in southern South

America (Fig. 2e). Figures 2a–d show the deterministic

forecasts represented by the ensemble mean tempera-

ture anomalies produced four to one week in advance

and valid for that particular week. The pattern of ob-

served anomalies could only be deterministically pre-

dicted by the ECMWFmodel one week in advance. The

forecast issued one week in advance (Fig. 2d) displays

temperature anomalies of similar magnitude to the ob-

served ones (Fig. 2e). However, the forecast produced

two weeks in advance (Fig. 2c) exhibits a cold anomaly

considerably weaker than that observed and extended

over most Argentina, hindering the temperature con-

trast observed between the north and the south parts of

the country. On the other hand, the forecasts issued

three to four weeks in advance (Figs. 2b and 2a, re-

spectively) show predominantly positive temperature

anomalies, with a pattern completely different from the

observed anomalies (Fig. 2e).

To quantify the degree of correspondence between

the deterministic forecasts in Figs. 2a–d and the obser-

vations in Fig. 2e, the area-weighted spatial linear

Pearson correlation was computed, and is presented in

the top right of each of the panels of Figs. 2a–d. As ex-

pected, the pattern correlation values are larger for

shorter lead forecasts; however a modest correlation

value of 0.65 was obtained for forecasts produced one

week in advance, diminishing considerably for forecasts

produced two weeks in advance (0.25). Longer-lead

forecasts resulted in no spatial correlation.

Figures 2f–i show the forecast probability for the oc-

currence of negative anomalies during the target week

of 17–23 July 2017. Forecast probabilities were com-

puted as the fraction of the ensemble members (51) in-

dicating a negative temperature anomaly. Blue (brown)

colors represent regions where the model showed high

(low) probabilities of cold anomalies. The model

successfully indicated high probabilities for the occur-

rence of negative anomalies in tropical South America

one week in advance (Fig. 2i). However, large proba-

bilities of cold conditions were only forecast two weeks

in advance over some regions in eastern Brazil and with

reduced values in northeastern Argentina (Fig. 2h),

while over Patagonia the model was unable to indi-

cate the potential for the occurrence of anomalously

warm conditions with that anticipation. The model

also failed to forecast the potential for the occurrence of

cold conditions from three to four weeks in advance

(Figs. 2f,g).

The performance of the ECMWF model in forecast-

ing the week of 17–23 July 2017 can be compared to the

historical performance of the ECMWF deterministic

(ensemble mean) predictions produced for past years

using the three levels verification framework: (i) using

the retrospective forecasts for the same target week

(target week hindcast verification), (ii) using the ret-

rospective forecasts for all weeks within the JJA sea-

son (all-season hindcast verification), and (iii) using

the forecast produced on real time for all weeks within

the JJA season (all-season real-time forecast verification).

Such an assessment when performed in conjunction
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with the forecast to be issued for the particular week

of interest is useful to reinforce and expand the con-

fidence levels underpinning the weekly forecasts (Coelho

et al. 2018).

To assess the strength of the linear association, maps

of correlation between the observed temperature

anomalies and the predicted ensemble mean produced

four to one week in advance are presented in Fig. 3 for

the three levels of verification: target week hindcast

verification (Figs. 3a–d), all-season hindcast verification

(Figs. 3e–h) and all-season real-time forecasts verifica-

tion (Figs. 3i–l). As expected, all levels of verification

applied to hindcasts/forecasts produced 1–2 weeks in

advance show larger and statistically significant linear

association than those for hindcasts/forecasts produced

3–4 weeks in advance, mainly over northern Argentina,

southeastern Brazil, and Paraguay. The real-time fore-

casts for the JJA 2015–17 period produced one week in

advance (Fig. 3l) show larger correlation in eastern

Brazil than the JJA 1997–2016 hindcasts (Fig. 3h).

Figure 3c shows that the hindcasts produced two weeks

in advance for the target week in the 1997–2016 period

presented better association in northeastern Argentina,

Paraguay and southern Brazil than the hindcasts con-

sidering all JJA Thursday initializations (Fig. 3g). This

feature was also noticed for forecasts produced three

weeks in advance, but with only a restricted number

of grid points showing statistically significant correla-

tion values (Fig. 3b). Figure 3a shows negative correla-

tion coefficients over southeastern South America for

FIG. 3. Maps of correlation between the ECMWF ensemble mean temperature anomaly prediction produced from four to one week in

advance (shown from left to right) and the corresponding observed (JRA-55) temperature anomalies at each grid point for (a)–(d) the

target week hindcast verification sampling strategy (20 samples), (e)–(h) the all-season hindcast verification sampling strategy (280

samples), and (i)–(l) the all-season real-time forecast verification sampling strategy (40 samples) described in the text. The dots mark grid

points where the computed correlation coefficient was found to be statistically significantly different from zero at the 5% level using a two-

sided Student’s t test.
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forecasts produced four weeks in advance for the week

of 17–23 of July, indicating an opposite phase between

the forecast temperature anomalies and the observa-

tions. Neither in hindcasts nor in real-time forecasts

produced three and four weeks in advance during the

JJA season a positive statistically significant correlation

was obtained over the central and southeastern South

America region affected by the marked negative tem-

perature anomalies (Figs. 3e,f,i,j).

The MSSS was computed for the three verification sam-

pling strategies to study the skill of the hindcasts/forecasts

compared to the climatological prediction. Most of

subtropical and extratropical South America show

positive values of MSSS for hindcasts/forecasts pro-

duced one week in advance, revealing improved ac-

curacy respect to climatology (Fig. 4). For the three

levels of verification, the regions of positive MSSS for

forecasts produced one week in advance (Figs. 4d,h,l)

match those of largest correlation coefficients (Figs. 3d,h,l).

This accordance between the regions with improved ac-

curacy and smaller phase error (i.e., the forecast/hindcast

anomalies oscillate in phasewith the observed anomalies)

suggest that the correlation component of the MSSS

decomposition contributes considerably for the iden-

tified positive skill shown with the MSSS (Fig. 4). On

the other hand, the target week and all-season hindcast

verification levels present no skill over most of the re-

gion when producing the forecasts 2–4 weeks in ad-

vance (Figs. 4a–c,e–g). There is, however, a region in

northern Brazil in which the real-time forecasts verifi-

cation present forecast skill up to four weeks in ad-

vance (Figs. 4i–k).

FIG. 4. Maps of MSSS with respect to climatology for the ECMWF ensemble mean temperature anomaly predictions produced from

four to one week in advance (shown from left to right) for (a)–(d) the target week hindcast verification sampling strategy (20 samples),

(e)–(h) the all-season hindcast verification sampling strategy (280 samples), and (i)–(l) the all-season real-time forecast verification

sampling strategy (40 samples) described in the text.
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The amplitude error of the ensemble mean forecast

was studied through computing the ratio between the

predicted temperature ensemble mean anomaly stan-

dard deviation and the observed temperature anomaly

standard deviation (Fig. 5). This amplitude error of the

ensemble mean is different (and larger) than the am-

plitude error of the individual ensemble members. In

regions where this ratio is smaller than unity a large

amplitude error exists in the forecasts, and the predicted

temperature anomalies present lower variability than

the variability of the observed anomalies. That is the case

over most of the continent for forecasts issued 2–4 weeks

in advance (Fig. 5), with some exceptions mainly in

northern Brazil and particularly for the real-time fore-

casts (Figs. 5i–k). The amplitude error is smaller for

forecasts issued one week in advance for all verification

sampling strategies (Figs. 5d,h,l).

The ability of the model to successfully discriminate

cold (negative anomaly) from warm (positive anomaly)

events over South America was assessed by analyzing

maps of the area under the ROC curve at each grid point

for the three verification levels, which are presented in

Fig. 6. The forecast is better at distinguishing cold from

warm events in the regions where the area under the

ROC curve is larger than 0.5. This was generally the case

over most of the continent for forecasts produced one

and two weeks in advance in all verification levels. For

the target week hindcast verification, forecasts issued

one week in advance show values overall larger than 0.7

and even greater than 0.9 in central, northeastern, and

FIG. 5. Maps of the ratio of the predicted ECMWF ensemble mean temperature anomaly standard deviation and the observed

temperature anomaly standard deviation for predictions produced from four to one week in advance (shown from left to right)

for (a)–(d) the target week hindcast verification sampling strategy (20 samples), (e)–(h) the all-season hindcast verification sam-

pling strategy (280 samples), and (i)–(l) the all-season real-time forecast verification sampling strategy (40 samples) described in

the text.
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southeastern South America (Fig. 6d), and values mostly

greater than 0.6 for forecasts produced two weeks in

advance (Fig. 6c). Discrimination of cold events for

forecasts for the target week issued 3 weeks in advance

showmore deficient discrimination ability in central and

southeastern South America. There is much reduced

discrimination ability for those issued 4 weeks in ad-

vance except for northern Brazil (Figs. 6b,a). For the all-

season hindcast strategy, the larger sample accounts

for smoother patterns, and forecasts issued one week

in advance were able to discriminate a cold event from

a warm event over most of the continent, particularly

over northeastern Argentina, Paraguay, and southeast-

ern Brazil (Fig. 6h), and similarly for forecasts issued

two weeks in advance (Fig. 6g). For longer leads the best

discrimination ability is achieved north of 158S. Last,
the third level of verification (Figs. 6i–l) shows good

discrimination for forecasts issued one week in ad-

vance, particularly over eastern and southeastern Brazil,

and for forecasts issued 2–4 weeks in advance show

a more scattered behavior, with less-coherent spatial

patterns.

A similar assessment was performed for the events

‘‘temperature anomaly in the lower tercile’’ and ‘‘tem-

perature anomaly in the upper tercile’’ to analyze dif-

ferences in the discrimination ability of the model for

those events. The all-season hindcast verification level

for these events is shown in Fig. S2. The area under

the ROC curve for both events is overall similar and

to Figs. 6e–h, with a slight difference for hindcasts

FIG. 6. Maps of area under the ROC curve computed for ECMWF forecast/hindcast probabilities for the occurrence of the event

negative temperature anomaly produced from four to one week in advance (shown from left to right) at each grid point for (a)–(d)

the target week hindcast verification sampling strategy (20 samples), (e)–(h) the all-season hindcast verification sampling strategy

(280 samples), and (i)–(l) the all-season real-time forecast verification sampling strategy (40 samples) described in the text. The dots mark

grid points where the computed area under the ROC curve was found to be significantly different from 0.5 at the 5% confidence level.
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produced one week in advance, which shows a higher

score over northeastern Argentina and Uruguay for

warm events respect to the cold events (Fig. S2).

In addition, overall discrimination was assessed by

computing the ROC curves for ensemble derived prob-

abilistic prediction issued for the event negative tem-

perature anomaly collected over all grid points within

the domain shown in the figures, aggregating all avail-

able hindcasts/forecasts in space and time, as presented

in Fig. 7. Therefore, the ROC curves represent the hit

rate versus false alarm rate when evaluating probabil-

ity forecast of negative temperature anomalies, consid-

ering the cases when the anomaly was forecast with

at least 10% of probability, 20%, up to at least 90%.

Hindcast/forecast probabilities were determined by com-

puting the fraction of ensemble members indicating a

negative temperature anomaly. In general, there are larger

areas under the ROC curve for shorter leads, irre-

spective to the three verification levels here investi-

gated. When analyzing only the ROC curves for the

target week (17–23 July, Figs. 7a–d) presented for each

lead (one to four weeks in advance), there is slightly less

or equivalent discrimination ability than the all-season

hindcasts (Figs. 7e–h) and real-time forecasts (Figs. 7i–l)

verification levels.

Considering the probabilistic predictions issued for

the event negative temperature anomaly, the forecast

is considered to be reliable if the forecast probability

of the event corresponds to the expected frequency

of observing negative temperature anomalies. Figure 8

shows the reliability diagrams for the ensemble derived

probabilistic predictions issued for the event negative

temperature anomaly collected over all grid points, ag-

gregating all available hindcasts/forecasts in space and

FIG. 7. ECMWF ROC curves for ensemble derived probabilistic predictions issued for the event negative temperature anomaly col-

lected over all SouthAmerican grid points, aggregating all available forecasts/hindcasts in space and time, produced from four to oneweek

in advance (shown from left to right), for (a)–(d) the target week hindcast verification sampling strategy (20 samples), (e)–(h) the all-

season hindcast verification sampling strategy (280 samples), and (i)–(l) the all-season real-time forecast verification sampling strategy

(40 samples) described in the text. Forecast/hindcast probabilities were derived using the available ensemble members for each sampling

strategy and determined by computing the fraction of ensemble members indicating a negative temperature anomaly.
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time. The closer the curves to the diagonal, the more

reliable the forecast is; if the curve is below (above) the

diagonal, forecast probabilities are higher (lower) than

observed frequencies, and therefore indicates over-

forcasting (underforcasting). If the curve is flat, the

forecast presents no resolution. Overall, predictions are

overconfident and show poor resolution particularly for

hindcasts produced 4 weeks in advance. Better reliabil-

ity is observed for the real-time forecasts issued for all

JJA season (Figs. 8i–l).

The histograms in the bottom right of each panel in

Fig. 8 represent the relative frequency of the issued

forecast probabilities of the event negative temperature

anomaly falling into each of the 10 bins of forecast

probability (0%–10%, 10%–20%, and so on up to 90%–

100%): the sharpness diagram. The forecasts are sharper

for shorter leads, with the histograms peaking at the

two extreme bins, particularly when produced one

week in advance. For this lead time the event is forecast

around 30% of the times with a 0%–10% and also

30% of the time with 90%–100% probability in the

target week and all-season hindcasts levels (Figs. 8d,h).

When produced two weeks in advance, the event is

forecast around 20% of the times with those proba-

bilities, losing sharpness but still forecasting the ex-

treme bins more often than the rest (Figs. 8c,g).

Differently, the sharpness diagram for the real-time

forecasts show that the event negative temperature

anomaly is forecast around 50% of the times with a

probability of 0%–10%, and around 13% of the times

with a probability of 90%–100% (Fig. 8l). This sam-

pling verification level also shows that higher relative

FIG. 8. ECMWF reliability diagrams for ensemble derived probabilistic predictions issued for the event negative temperature anomaly

collected over all South American grid points, aggregating all available forecasts/hindcasts in space and time, produced from four to one

week in advance (shown from left to right), for (a)–(d) the target week hindcast verification sampling strategy (20 samples), (e)–(h) the all-

season hindcast verification sampling strategy (280 samples), and (i)–(l) the all-season real-time forecast verification sampling strategy

(40 samples) described in the text. Sharpness diagrams for each case are plotted in the bottom right of the reliability diagrams, and relative

frequencies of the predicted event are shown in each of 10 bins: 0%–10%, 10%–20%, 20%–30%, 30%–40%, 40%–50%, 50%–60%,

60%–70%, 70%–80%, 80%–90%, and 90%–100%.
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forecast frequencies are noticed for the lower proba-

bility bins (Figs. 8i–k).

b. Warm week: 24–30 July

A warm week followed the cold conditions of the

week of 17–23 July in central South America. Between

24 and 30 July, warm anomalies were observed in central

and north Argentina, Uruguay, Paraguay, Bolivia, and

southeastern Brazil, while cold anomalies were observed

in eastern Brazil (Fig. 9e). In this section we assess the

performance of ECMWF model in forecasting the tem-

perature anomalies for this anomalously warm week and

compare it with the performance of the previous anom-

alously cold week presented in the preceding section. For

this assessment the three level verification framework

used for evaluating forecast quality for the previous cold

week and providing supporting verification information

together with forecast information at the time of issuing

the forecast now for the warm target week is also used.

The deterministic forecasts given by the ensemble

mean temperature anomalies (Figs. 9a–d) show a rela-

tively good similarity for forecasts issued one and two

weeks in advance, with forecast anomalies (Figs. 9c,d) of

similar magnitude to the observed anomalies (Fig. 9e).

Nevertheless, the forecasts produced three to four weeks

in advance (Figs. 9b,a) failed to simulate the observed

large positive temperature anomalies (Fig. 9e). For this

week, the linear Pearson pattern correlation, shown in

the top right of each panel of Figs. 9a–d, was found to be

large for forecasts produced one and two weeks in ad-

vance (0.90 and 0.86, respectively); however, for longer-

lead forecasts the spatial correlation was much reduced.

Compared to the spatial correlations for forecasts pro-

duced one to two weeks in advance for the previous cold

week (Figs. 2d,c; 0.65 and 0.26, respectively), the warm

week resulted in a much better forecast pattern match

than the cold week. As warm temperature anomalies

were observed previous to the cold week of 17–23 July

and also after that, this long-lasting warmer-than-

normal event might have been responsible of the better

forecast for longer leads for this target week.

The probabilistic forecasts were also found to be good

when issued up to two weeks in advance, but not for

longer leads, in central and southern South America.

Figures 9f–i show the forecast probability of occurrence

of negative anomalies during the target week. Blue

(brown) colors indicate regions where the model

showed high (low) probabilities for the occurrence of

cold anomalies and low (high) probabilities for the oc-

currence of warm anomalies. The model successfully

indicated low probabilities for the occurrence of nega-

tive anomalies in most South America, and therefore,

high probabilities for the occurrence of positive anom-

alies, and high probabilities for the occurrence of

FIG. 9. ECMWFensemblemean forecast temperature anomalies for the target week of interest (24–30 Jul 2017) initialized on (a) 29 Jun

2017, (b) 6 Jul 2017, (c) 13 Jul 2017, and (d) 20 Jul 2017, representing forecasts produced from 4 to 1 week in advance as described in the

text. (e) Observed temperature anomalies for the week 24–30 Jul 2017 with respect to the 1995–2017 period. ECMWF forecasts prob-

abilities for the occurrence of negative temperature anomaly during the target week of interest (24–30 Jul 2017) initialized on the (f) 29 Jun

2017, (g) 6 Jul 2017, (h) 13 Jul 2017, and (i) 20 Jul 2017. (j) Binary observation indicating where a negative (blue) or a positive (red)

temperature anomaly was recorded during the week of 24–30 Jul 2017.
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cold anomalies in eastern Brazil 1–2 weeks in advance

(Figs. 9i,h). The forecasts (Figs. 9g,f) failed to indicate

the potential for the occurrence of warm conditions in

central and southeastern South America three to four

weeks in advance. As when analyzing the deterministic

forecast of the ensemblemean, the probabilistic forecast

produced one week in advance and particularly the

forecast produced two weeks in advance were better for

this target week (Figs. 9i–h) compared to the previous

cold one (Figs. 2i,h).

The verification metrics for hindcasts produced from

four to one week in advance of the week of 24–30 July

FIG. 10. Verificationmetrics for theweek 24–30 Jul 2017 for the target week hindcast verification sampling strategy (20 samples): (a)–(d)

maps of correlation between the ECMWF ensemble mean temperature anomaly prediction produced from four to one week in advance

and the corresponding observed temperature anomalies (JRA-55) at each grid point, (e)–(h) maps of MSSS with respect to climatology

the ECMWF ensemble mean temperature anomaly predictions produced four to one week in advance, (i)–(l) maps of the ratio of the

predicted ECMWF ensemble mean temperature anomaly standard deviation and the observed temperature anomaly standard deviation

for predictions, and (m)–(p) maps of area under the ROC curve computed for ECMWF hindcast probabilities for the occurrence of the

event negative temperature anomaly at each grid point.
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and for the target week hindcast verification level are

shown in Fig. 10. These include maps of correlation

between the observed temperature anomalies and the

predicted ensemble mean (Figs. 10a–d), maps of the

MSSS for hindcast temperature anomalies computed

with respect to the climatological prediction (Figs. 10e–h),

maps of the ratio between the predicted temperature

ensemble mean anomaly standard deviation and the

observed temperature anomaly standard deviation

(Figs. 10i–l) and maps of the area under the ROC curve

at each grid point (Figs. 10m–p). In this case, only the

first sampling strategy is computed, as the all-season

hindcast and all-season real-time forecast verification

levels are the same as shown in Figs. 3–6 for the previ-

ously investigated week, as both belong to the JJA

season. However, in the proposed framework used here

verification information of the three levels are compared

and examined together with the forecast information for

the target week of interest.

There is a vast region of large positive correlation

spanning most of Argentina, southern Brazil, Uruguay,

Paraguay and Bolivia for the target week forecast veri-

fication level produced one week in advance (Fig. 10d),

which reveals a small phase error (i.e., the forecast

anomalies generally oscillate in the direction of the ob-

served anomalies), but the correlation values decrease

considerably over this region for hindcasts produced

two to four weeks in advance, with regions presenting

statistically significant positive correlation values scat-

tered over specific regions (Figs. 10a–c). Comparing

to the week of 17–23 July of the hindcasts analyzed in

the previous section (Figs. 3a–d) produced one week

in advance, larger regions of correlation greater than

0.8 are noticed for 24–30 July week (Fig. 10d). Hindcasts

produced two weeks in advance show statistically

significant correlation values greater than 0.4 mostly

over western Brazil (Fig. 10c), as opposed to eastern

Bolivia, Paraguay, northern Argentina, and southern

Brazil for the earlier week (Fig. 3c). When comparing

to the other verification levels (all-season hindcasts

and real-time forecasts, Figs. 3e–l), the target week

verification level for hindcasts produced one week

in advance show the largest region with positive cor-

relation values (Fig. 10d). Moreover, for hindcasts

produced two weeks in advance western Brazil pre-

sented the highest correlation values (Fig. 10c), and

this region also appear showing moderate correlation

in the all-season hindcast sampling strategy (Fig. 3g)

but not in the real-time forecasts (Fig. 3k).

The maps of MSSS (Figs. 10e–h) show that regions

with improved accuracy compared to the climatological

prediction are only noticed for hindcasts produced one

week in advance andmostly concentrated over the same

region as in the other two verification levels (Figs. 4h,l).

Maps of the ratio between the predicted temperature

ensemble mean anomaly standard deviation and the

observed temperature anomaly standard deviation

(Figs. 10i–l) for hindcasts produced one week in advance

show, as for the previous target week, that for the week

of 24–30 July the ratio is smaller than unity (and then,

there is a large amplitude error in the predicted anom-

alies) only in some regions, particularly over northern

South America (Fig. 10l). Forecasts produced two to

four weeks in advance show large amplitude errors in

most South America (Figs. 10i–k). Finally, the maps

of the area under the ROC curve (Figs. 10m–p) show

that for hindcasts produced one week in advance, the

model can discriminate a cold from a warm event over

most of South America, and only to the north of ap-

proximately 158S for longer leads. The target week

verification level for 24–30 July indicates overall lower

discrimination ability at grid point level over central

South America (Figs. 10m–o) than the previous week

(Figs. 6a–d) and the all-season hindcast (Figs. 6e–h) and

real-time forecasts (Figs. 6i–l), particularly for forecasts

issued 2–4 weeks in advance. When comparing fore-

casts produced 3 and 4 weeks in advance for the first

level of verification for the cold and warm target weeks,

some similarities arise in the verification scores maps.

This may be associated to the forecast quality of the

investigated model.

ROC curves, reliability and sharpness diagrams for

ensemble derived probabilistic prediction issued for the

event negative temperature anomaly collected over all

South American grid points for the target week hindcast

sample strategy are presented in Fig. 11. Shorter lead

forecasts show the larger areas under the ROC curve

and the area for hindcasts produced one week in ad-

vance is greater for the week of 24–30 July (Fig. 11d)

than for the week of 17–23 (Fig. 7d). The reliability

diagrams for the week of 24–30 July reveal better re-

liability and resolution for shorter leads, which are

also better than for the previously investigated week

of 17–23 July (Figs. 8a–d), but the hindcasts seem to be

equally sharp.

4. Discussion and conclusions

This paper presented an assessment of ECMWF

subseasonal temperature predictions for two anomalous

cold and warm weeks of July 2017 in South America,

following the three level verification framework designed

by Coelho et al. (2018). Ensemble mean forecasts were

able to predict the cold anomaly of the week of 17–

23 July 2017 one week in advance and thewarm anomaly

of theweek of 24–30 July 2017 up to twoweeks in advance.
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These findings were consistent in both deterministic and

probabilistic forecasts here assessed.

A set of verification metrics were computed for three

verification levels: considering all target weeks in the

20 years of hindcast period, aggregating all hindcasts

produced on Thursdays within the JJA season along

20 years and collecting all real-time forecasts pro-

duced during the JJA season for 2015, 2016, and 2017.

The metrics included correlation, mean squared skill

score, the ratio of the standard deviations of the en-

semble mean anomaly and the observed temperature,

area under the ROC curve, ROC curves and reliabil-

ity diagrams. These metrics were computed to be used

together with the forecasts produced for the target

week of interest in order to help identify regions

where the forecasts have best performance. As the

cold and warm anomalies were most pronounced over

central and southeastern South America during the two

weeks here investigated, and forecasts produced three

and four weeks in advance generally showed poor per-

formance, the following discussion is focused in those

regions and in forecasts produced one and two weeks in

advance (valid days 5–11 and 12–18, respectively), which

showed better performance, in order to answer the

questions posed in the introduction.

A smaller phase error was noticed in central and

southeastern South America for the target week 17–23 July

hindcast verification strategy compared to the all-season

JJA hindcast verification strategy, particularly when

produced two weeks in advance. The MSSS resulted

mostly similar in both verification strategies and lead

times, which revealed that in both cases the skill with

respect to the (null) climatology is similar. Also, the

ratios of standard deviations was similar and mostly

lower than 1, revealing large amplitude errors in the

hindcasts of the target week and in the all-season veri-

fication strategies. The discrimination between cold and

warm event for the target week 17–23 July hindcast

verification was higher than for the all-season hindcast

verification strategy, as shown by the area under the

ROC curve, and particularly over central and south-

eastern South America for hindcasts produced two

weeks in advance. When collecting all grid points in the

study region, the all-season hindcast verification strategy

resulted in more reliable predictions than the target

week hindcast verification strategy produced one week

in advance.

On the other hand, when comparing the target week

of 24–30 July to the all JJA hindcasts verification levels,

the linear association was higher for the target week

over southern South America only and for forecasts

produced one week in advance. However, for forecasts

produced two weeks in advance, the phase error re-

sulted smaller when considering all JJA initializations.

FIG. 11. Verification curves and diagrams for the week 24–30 Jul 2017 for the target week hindcast verification sampling strategy

(20 samples): (a)–(d) ECMWF ROC curves for ensemble derived probabilistic predictions issued for the event negative temperature

anomaly collected over all South American grid points, aggregating all available forecasts/hindcasts in space and time, produced four to

one week in advance, and (e)–(h) ECMWF reliability diagrams for ensemble derived probabilistic predictions issued for the event

negative temperature anomaly collected over all South American grid points, aggregating all available forecasts/hindcasts in space and

time, produced from four to one week in advance.
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Forecasts produced one week in advance of 24–30 July

showed locally some regions with ratios of standard

deviation greater than 1.1, revealing that the predicted

temperature anomalies present higher variability than

that of the anomalies, mostly over Paraguay and eastern

Bolivia. This is not seen in the all-season hindcasts

sampling strategy. Forecast discrimination of positive

versus negative anomaly in forecasts produced two

weeks in advance of the target week was not good in

central and northern Argentina, only in southeastern

Brazil two weeks in advance, and reliability for fore-

casts produced one and two weeks in advance were as

reliable for the target week as for the all JJA season

verification level.

The all-season hindcast verification strategy and the

all-season real-time forecast verification strategy for

2015–17 were compared using the same verification

metrics used earlier. The correlation between the fore-

cast and observed temperature anomalies was larger for

the real-time forecast verification strategy over central

SouthAmerica and eastern Brazil than for the all-season

hindcast verification strategy for predictions produced

twoweeks in advance. There is also a region off the coast

of southern Brazil and Uruguay with remarkable cor-

relation levels even for predictions produced 3 weeks in

advance. TheMSSS is quite similar in both cases, except

for northern Brazil for all leads, where the score is

positive (better skill than climatology) in the real-time

forecasts. Recently, Gubler et al. (2020) found that the

ECMWF SEAS5 model seasonal forecasts achieve a

good performance for seasonal temperature predic-

tions over this region, which the authors attribute to the

relatively high influence of ENSO there. ENSO influ-

ence may also be providing a source of predictability

for the Amazon region. Real-time forecasts produced

two weeks in advance show larger area under the ROC

curve over northern and eastern Brazil and off the coast,

compared to the all-season hindcast verification strat-

egy. The performed assessment using ROC curves and

reliability diagrams revealed slightly better discrimi-

nation, reliability, and resolution for the real-time

forecast verification strategy compared to the all-

season hindcast verification strategy. However, the

sharpness of the predictions of these two strategies is

quite different, with the real-time forecasts presenting

higher frequency for low probabilities, dropping to near

zero frequency for forecasts produced two or more than

two weeks in advance.

As discussed in Coelho et al. (2018), the verification

framework used in this study should be used being

aware of its advantages but also its limitations. When

comparing the target week and the all-season hindcast

verification, sampling might be responsible for some

differences in the skill scores, and therefore one good

or bad forecast may have larger influence in the first

level of verification. Nonetheless, the 20 samples are

above the suggested number of hindcast seasons when

verifying seasonal forecasts, according to the World

Meteorological Organization. The third level of verifi-

cation, which uses all-season real-time forecasts, should

be analyzed considering that sampling due to interan-

nual variability, quality and ensemble size influence the

results when comparing to the 20-yr hindcast analysis

(Coelho et al. 2018). Sampling of this third level of

verification spans only three years and therefore its

quality is affected by interannual variability (e.g., El

Niño–Southern Oscillation, year-to-year activity of the

MJO); the better quality of the initial conditions used to

initialize the real-time forecasts might also be one of the

reasons of the higher skill respect to the all-season

hindcast; and the 51 member of ensemble size is con-

siderably larger than the 11 member size of the hindcast.

The robustness of the results was analyzed in the

following aspects. Ensemble size of the real-time fore-

cast was reduced using a subsample of 11 members to

assess the third level of verification (Fig. S3) and we

found that the spatial patterns observed in the skill maps

resulted mostly unchanged, and was therefore discarded

as the main reason of the differences against the all-

season hindcast verification level. Also, the ability of the

ECMWFmodel to discriminate a cold event—whichwas

assessed using the area under the ROC curve and defining

a cold event as a negative temperature anomaly—was

also determined defining a cold event as those weeks in

which the temperature anomaly is in the lower tercile

and in the lower quintile. The differences were small

and mostly only observed in the target week hindcast

verification, for example a higher ROC area was ob-

tained for central and northern Argentina in week 1

(not shown). Finally, a different dataset was used to

verify the ECMWF model hindcast/forecast, the ERA5

reanalysis (Copernicus Climate Change Service 2017).

We found that our results still stand, as only some spe-

cific regions show slight differences in the magnitude of

the scores but they present overall the same pattern

(e.g., Figs. S4 and S5).

As was previously noted, ECMWF ensemble mean

forecasts could predict the cold anomaly of the week of

17–23 July 2017 one week in advance and the warm

anomaly of the week of 24–30 July 2017 two weeks in

advance. To our knowledge it has not been studied

whether the ECMWF model forecasts are more skillful

for warm anomalies than for cold anomalies within the

same season (in this particular case, austral winter) and

over South America. A recent study by Lavaysse et al.

(2019) has analyzed the predictability of heat waves
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during summer and cold waves during winter over

Europe for the ECMWFmodel and found overall higher

predictive skill for cold waves. However, the dynamics

of the atmospheric circulation are also important for

case studies. For example, Vitart and Robertson (2018)

have shown that the cold anomalies in the Northern

Hemisphere during March 2013 were more predictable

for those CFSv2 model (Saha et al. 2014) members

which predicted accurately the phase and amplitude of

the Madden–Julian oscillation (MJO). In this way, the

ability of a model to forecast the alternation of cold

and warm weeks might also be linked to its ability to

predict transitions between circulation patterns, and

future studies should address the link between the skill

in the prediction of circulation and temperature anom-

alies in South America and the skill in predicting the

evolution of circulation patterns such as the MJO.

Finally, advancing in the verification of forecasting

systems in the subseasonal time scale is key for sup-

porting adequate use of these predictions for identi-

fied regions and lead times for which these forecasts

show best quality. Calibration techniques and the

construction of multimodel ensembles are pathways

to improve subseasonal prediction performance in

the future.
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