
Received: 10 July 2019 Revised: 2 December 2019 Accepted: 7 December 2019

DOI: 10.1002/qj.3725

RE S EARCH ART I C L E

Configuration and hindcast quality assessment of a
Brazilian global sub-seasonal prediction system

Bruno S. Guimarães1,2 Caio A. S. Coelho1 Steven J. Woolnough2 Paulo Y. Kubota1

Carlos F. Bastarz1 Silvio N. Figueroa1 José P. Bonatti1 Dayana C. de Souza1

1Center for Weather Forecast and Climate
Studies, National Institute for Space
Research, Cachoeira Paulista, Brazil
2National Centre for Atmospheric
Science, Department of Meteorology,
University of Reading, Reading, UK

Correspondence
B.S. Guimarães, CPTEC, Rodovia
Presidente Dutra, Km 39, Cachoeira
Paulista, SP, 12630-000, Brazil.
Email: guimara.bruno@gmail.com

Funding information
CASC thanks CNPq, 304586/2016-1;
Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq),
Coordenação de Aperfeicoamento de
Pessoal de Nível Superior (CAPES) and
University of Reading, GS18-179;
Fundação de Amparo à Pesquisa do Estado
de São Paulo (FAPESP), 2015/50687-8

Abstract
This article presents the Centre for Weather Forecast and Climate Studies
(CPTEC) developments for configuring a global sub-seasonal prediction sys-
tem and assessing its ability in producing retrospective predictions (hindcasts)
for meteorological conditions of the following 4weeks. Six Brazilian Global
Atmospheric Model version 1.2 (BAM-1.2) configurations were tested in terms
of vertical resolution, deep convection and boundary-layer parametrizations,
as well as soil moisture initialization. The aim was to identify the configura-
tion with best performance when predicting weekly accumulated precipitation,
weeklymean 2m temperature (T2M) and theMadden–Julian Oscillation (MJO)
daily evolution. Hindcasts assessment was performed for 12 extended aus-
tral summers (November–March, 1999/2000– 2010/2011) with two start dates
for each month for the six configurations and two ensemble approaches. The
first approach, referred to as Multiple Configurations Ensemble (MCEN), was
formed of one ensemble member from each of the six configurations. The sec-
ond, referred to as Initial Condition Ensemble (ICEN), was composed of six
ensemble members produced with the chosen configuration as the best using
an empirical orthogonal function (EOF) perturbation methodology. The cho-
sen configuration presented high correlation and low root-mean-squared error
(RMSE) for precipitation and T2M anomaly predictions at the first week and
these indices degraded as lead time increased, maintaining moderate perfor-
mance up to week-4 over the tropical Pacific and northern South America. For
MJO predictions, this configuration crossed the 0.5 bivariate correlation thresh-
old in 18 days. The ensemble approaches improved the correlation and RMSE of
precipitation and T2M anomalies. ICEN improved precipitation and T2M pre-
dictions performance over eastern South America at week-3 and over northern
South America at week-4. Improvements were also noticed forMJO predictions.
The time to cross the above-mentioned threshold increased to 21 days forMCEN
and to 20 days for ICEN.
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1 INTRODUCTION

Forecasting for the time-scale between 2weeks and
2months is known as sub-seasonal prediction (Vitart et al.,
2017). This type of forecast is a major challenge because
the predictability contribution from the atmospheric ini-
tial conditions is reduced compared to shorter (weather)
time-scales, and the predictability from slowly varying
boundary conditions is small for 1–2week averages, typi-
cally the focus of sub-seasonal prediction, compared to sea-
sonal time-scales (Kumar et al., 2011; Lin et al., 2016). The
main source of predictability for sub-seasonal forecasting
is the Madden–Julian Oscillation (MJO) (Zhang, 2013).
However, general-circulation models (GCMs) still show
limitations in simulating this oscillation (Green et al.,
2017; Wang et al., 2018), even with important improve-
ments achieved in recent years (Saha et al., 2014; Vitart,
2014). As a consequence of these limitations, the predic-
tive ability of GCMs in the sub-seasonal scale is lower
than in the weather and seasonal scales (Zhu et al., 2014).
For example, de Andrade et al. (2019) showed the lim-
ited predictive ability of GCMs for sub-seasonal precipita-
tion predictions for lead times beyond 15 days. In general,
the GCMs show modest performance in specific areas
such as the equatorial regions of the Atlantic and Pacific
Oceans and over a few regions in South America at this
lead time.

In spite of these results, a tendency toward improve-
ments in GCMs for sub-seasonal predictions is seen and
severalmeteorological centres currently operationally pro-
duce this type of forecast (Vitart, 2004; Hudson et al., 2011;
Mastrangelo et al., 2012; Liu et al., 2017; Weber and Mass,
2017; Liang and Lin, 2018). The Centre for Weather Fore-
cast and Climate Studies [Centro de Previsão de Tempo e
Estudos Climáticos (CPTEC)], which plays a leading role
in South America with respect to weather and seasonal
forecasts, is now following the trend of these meteorologi-
cal centres and started to develop a sub-seasonal prediction
system. This is motivated by the fact that, as in seasonal
forecasting, SouthAmerica is located in a privileged region
for sub-seasonal prediction, with GCMs showing better
predictive ability in this region when compared to other
continental regions (Li and Robertson, 2015; de Andrade
et al., 2019).

The identified evolution in sub-seasonal predictions
is mainly due to improvements in the representation
of the MJO in GCMs. For example, The European
Centre for Medium-range Weather Forecasts (ECMWF)
showed a mean gain of one day in MJO prediction
performance per year (Vitart, 2014). This indicates that
in addition to improvements in predictive ability for

a phenomenon that manifests in the tropical region,
there is also associated improvement in the extratrop-
ics due to teleconnections generated by the MJO (Vitart,
2017).

These findings are documented, in large part, thanks to
the effort generated by the Sub-seasonal to Seasonal (S2S)
Prediction Project. This project was launched jointly by
theWorldWeather Research Programme (WWRP) and the
World Climate Research Programme (WCRP) of theWorld
Meteorological Organization (WMO) and aims to improve
forecast skill and understanding on the sub-seasonal to
seasonal time-scales and also to promote its uptake by
operational centres and by the applications community.
Currently, the S2S Prediction Project stores and dissem-
inates near-real-time forecasts and hindcasts of eleven
operational and research centres for research purposes
(Vitart et al., 2017).

The Brazilian Global Atmospheric Model (BAM:
Figueroa et al., 2016) is the current CPTEC global atmo-
spheric model for weather forecasting. The performance
of this model for sub-seasonal predictions has not been
documented yet. Therefore, this study presents the first
outcomes of this model for sub-seasonal predictions and
aims to determinewhichmodel configuration presents the
best performance for this time-scale. Special attention is
given to characteristics such as vertical resolution, deep
convection and boundary-layer parametrizations, as well
as initialization of the soil moisture, because they have
an important influence on the MJO and sub-seasonal pre-
dictions. A similar approach was taken by Green et al.
(2017) in order to identify a model configuration with best
performance when producing MJO predictions. Green
et al. (2017) evaluated the MJO predictive ability in multi-
physics and multimodel global ensembles, by performing
two sets of hindcasts in order to test the impact of using
the Grell and Freitas (2014) versus the revised simpli-
fied Arakawa–Schubert (Han and Pan, 2011) deep con-
vection parametrization. They revealed that the Grell and
Freitas (2014) convection parametrization showed better
MJO prediction performance than the revised simplified
Arakawa–Schubert scheme.

The article is organized as follows. Section 2 presents
the model description, datasets used for model initial-
ization and hindcast quality assessment, the definition
of the experiments, ensemble approaches and the met-
rics used for evaluation. The retrospective performance
of the produced precipitation, 2 m temperature (T2M)
and MJO predictions with different BAM configura-
tion experiments, including two ensemble approaches, is
shown in Section 3. The final section is intended for the
conclusion.
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2 MODEL DESCRIPTION,
DATASETS AND EXPERIMENTAL
CONFIGURATIONS, EVALUATION
METRICS AND ENSEMBLE
APPROACHES

2.1 Model description

The model version used in this study is the current
operational CPTEC global spectral atmospheric model
developed for numerical weather forecasting, which is
known as BAM version 1.2 (BAM-1.2). This model ver-
sion has different options for dynamical and physics
parametrizations. The Eulerian advection scheme option
with a two-time-level semi-Lagrangian scheme for mois-
ture transport and microphysics prognostic variables
is used in this study. The physical processes of this
recent operational version are similar to the previous
version (BAM-1.0) and are described in Figueroa et al.
(2016), which are: microphysics from Morrison et al.
(2009), the IBIS-CPTEC surface model (Kubota, 2012),
the long-wave radiation scheme developed by Chou et al.
(2001) (CLIRAD-LW), the short-wave radiation scheme
developed by Chou and Suarez (1999) (CLIRAD-SW), the
latter modified by Tarasova and Fomin (2000), the mod-
ified Mellor–Yamada diffusion scheme for the planetary
boundary layer (PBL), which is based on Mellor and
Yamada (1982) and is referred to as dry-PBL, and the
modified Grell–Dévényi deep convection scheme, which
is based on Grell and Dévényi (2002). The two new
BAM-1.2 components are the Bretherton–Park moist dif-
fusion scheme (Bretherton and Park, 2009) for the PBL,
which is referred to as moist-PBL, and the revised ver-
sion of the simplified Arakawa–Schubert deep convection
scheme (Han and Pan, 2011), which were recently imple-
mented. Following Yu et al. (2006), aerosol optical depth
in the first 2 km of the atmosphere is specified as 0.22 over
the continents and as 0.14 over the oceans. The horizontal
resolution used in this study is triangular truncation at 126
waves (TQ126, corresponding to a grid of approximately
1.0◦ in latitude and longitude) and two vertical resolutions
are examined: 42 (L42) and 64 (L64) sigma vertical levels.

One of the objectives of this study is to investigate
the performance of the two PBL and deep convection
schemes mentioned above for sub-seasonal predictions.
The main difference of the newly implemented moist-PBL
Bretherton–Park scheme compared to the dry-PBL modi-
fied Mellor–Yamada diffusion scheme is the use of moist
conserved variables and an explicit entrainment closure
for convective layers. Regarding the convection schemes,
the revised simplified Arakawa–Schubert and the pre-
viously implemented modified Grell–Dévényi deep con-
vection parametrization schemes were both derived from

TABLE 1 Hindcasts initialization dates for
the six BAM-1.2 configurations

Days Months Years

03 and 14 November 1999–2010

01 and 15 December 1999–2010

04 and 14 January 2000–2011

01 and 15 February 2000–2011

03 and 14 March 2000–2011

Grell (1993), in which the cloud spectrum of the origi-
nal Arakawa and Schubert (1974) scheme is reduced to a
single cloud using a singlemass flux closure. Themain dif-
ferences between these convection schemes implemented
in BAM-1.2 are the fractional entrainment rate and con-
vection trigger formulations; see Han and Pan (2011) and
Figueroa et al. (2016) for additional information.

2.2 Datasets and experimental
configurations

Sub-seasonal hindcasts were performed over the period
defined as the extended austral summer (from Novem-
ber to March) over the 1999/2000–2010/2011 period. Two
hindcasts for two selected start dates were produced for
each month of a given year. Starts dates vary from one
month to the next and are presented in Table 1. Each hind-
cast was run for the following 35 days after the start date
(35 days of lead time). For the production of these hind-
casts, BAM-1.2 was not coupled with an ocean model.
Instead, the total sea-surface temperature (SST) field (not
the anomaly) of each start date was kept constant dur-
ing the 35 days of integration (persisted SST). It is worth
highlighting that coupled ocean–atmosphere processes are
recognized as being important on these time-scales (Reich-
ler and Roads, 2005; Chen et al., 2010; Kumar et al., 2011;
Shelly et al., 2014), but a number of centres contributing to
the S2S database [e.g. JapanMeteorological Agency (JMA)
and Environment and Climate Change Canada (ECCC)]
produce operational sub-seasonal forecasts using uncou-
pled systems (Vitart et al., 2017). The CPTEC coupled
ocean–atmosphere model version which uses BAM-1.2
as atmospheric component is under development. The
sub-seasonal hindcast quality assessment of this coupled
model version will be reported in future work.

ERA-Interim reanalyses (Dee et al., 2011) produced
by ECMWF were used in two ways. Firstly, the reanal-
yses were used as atmospheric initial conditions for the
hindcasts produced with BAM-1.2. The variables required
for initialization are zonal and meridional wind, specific
humidity, virtual temperature and ozone in 35 vertical
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levels between 1,000 and 50 hPa, surface pressure and SST.
The horizontal resolution chosen for initialization was
1.5◦ × 1.5◦ degrees in latitude and longitude, which was
interpolated to the model spectral resolution (TQ126L42,
∼100 km). Secondly, ERA-Interim data were used as refer-
ence to assess the quality of the produced hindcasts. The
variables selected for this assessment are T2M and zonal
and meridional winds at 850 and 200 hPa.

To assess precipitation hindcasts quality, daily data
from the Global Precipitation Climatology Project (GPCP:
Huffman et al., 2001) were used. GPCP is a product
derived from observed rainfall data and precipitation
estimates by geostationary and polar-orbiting satellites.
The spatial resolution of GPCP is 1◦ × 1◦ degrees in lat-
itude and longitude. Additionally, estimates of outgoing
long-wave radiation (OLR) from National Oceanic and
Atmospheric Administration (NOAA), with a spatial reso-
lution of 2.5◦ × 2.5◦ degrees in latitude and longitude, were
used for assessing the model ability to represent the MJO
in conjunction with zonal wind at 850 and 200 hPa from
ERA-Interim. This OLR estimation is generated through
interpolations in time of polar-orbiting satellite data (for
additional information, see Liebmann and Smith, 1996).

Six BAM-1.2 configurations for sub-seasonal predic-
tion have been defined for evaluation. Characteristics
such as vertical resolution, convection and boundary-layer
parametrizations were evaluated as well as the impact
of soil moisture initialization. Single member hindcasts
over the 1999/2000–2010/2011 extended austral summer
period were produced for each configuration. Five of the
configurations were defined by combining two convec-
tion schemes, the revised simplified Arakawa–Schubert
and the modified Grell–Dévényi, and two vertical diffu-
sion schemes for the PBL, the moist-PBL Bretherton–Park
scheme and the dry-PBL modified Mellor–Yamada, and
two vertical resolutions, 42 and 64 sigma levels. These
physical processes and vertical resolutions of the model
were selected because they have an important influence
on the predictive ability of the MJO (Vitart, 2014; Boyle
et al., 2015; Wang and Chen, 2017) and consequently in
the sub-seasonal precipitation and T2M predictions. It is
important to highlight that other aspects such as horizon-
tal resolution, radiation and microphysics parametriza-
tions are also important for the good representation of
the MJO (Zhang, 2005; Vitart, 2014; Wang et al., 2018).
However, such characteristics were not evaluated in the
present work.

The sixth configuration evaluates the impact of soil
moisture. This characteristic is a source of predictability
for the sub-seasonal time-scale and has a positive impact
on GCM predictive ability, especially in longer lead times
such aswhen predictingweeks 3 and 4 (Koster et al., 2010).
In this part of the study, the mean soil moisture from the

previous month of the start date of each hindcast from
the Global Land Data Assimilation System (GLDAS) ver-
sion 2 product (Rui and Beaudoing, 2017) was used to
initialize the soil moisture rather than using the monthly
climatological soil moisture estimate in order to assess
whether a more realistic soil moisture condition has an
impact on the predictive ability of BAM-1.2. The monthly
climatological soil moisture data estimates used in this
studywere obtained from the balance analyses ofWillmott
et al. (1985). Both GLDAS and climatological soil moisture
data estimates were interpolated to the model Gaussian
grid and converted to soil moisture fraction for hindcasts
initialization.

The six examined configurations are defined in Table 2
and are summarized below:

• 42ABC: BAM-1.2 with 42 vertical levels, revised
simplified Arakawa–Schubert deep convection
parametrization, moist Bretherton–Park boundary-
layer parametrization, and climatological soil moisture
initialization.

• 64ABC: BAM-1.2 with 64 vertical levels, revised
simplified Arakawa–Schubert deep convection
parametrization, moist Bretherton–Park boundary-
layer parametrization, and climatological soil moisture
initialization.

• 42ABG: BAM-1.2 with 42 vertical levels, revised
simplified Arakawa–Schubert deep convection
parametrization, moist Bretherton–Park boundary-
layer parametrization, and soil moisture initialized
through the GLDAS version 2 product.

• 42GBC: BAM-1.2 with 42 vertical levels, modified
Grell–Dévényi deep convection parametrization, moist
Bretherton–Park boundary-layer parametrization, and
climatological soil moisture initialization.

• 64GBC: BAM-1.2 with 64 vertical levels, modified
Grell–Dévényi deep convection parametrization, moist
Bretherton–Park boundary-layer parametrization, and
climatological soil moisture initialization.

• 42AMC: BAM-1.2 with 42 vertical levels, revised simpli-
fied Arakawa–Schubert deep convection parametriza-
tion, dry modified Mellor–Yamada boundary-layer
parametrization, and climatological soil moisture ini-
tialization.

2.3 Evaluation metrics and ensemble
approaches

We assessed the ability of the six BAM-1.2 configurations
to predict precipitation, T2M and the MJO. For
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TABLE 2 Summary of the six BAM-1.2 configurations investigated for sub-seasonal predictions

Vertical
levels

Convection
parametrization

Boundary-layer
parametrization Soil moisture

Configurations 42 64

Revised
simplified
arakawa-
schubert

Modified
Grell-
Dévényi

Bretherton-Park
(moist scheme)

Modified
Mellor-
Yamada
(dry scheme) Climatology GLDAS

42ABC

64ABC

42ABG

42GBC

64GBC

42AMC

precipitation and T2M, the deterministic assessment
consists of computing the Pearson correlation and
root-mean-square error (RMSE) between the prediction
and observed anomalies. Each metric was calculated for
each grid point and for four lead times: days 1–7 (week-1),
8–14 (week-2), 15–21 (week-3) and 22–28 (week-4). The
results were evaluated in the form of weekly averages
because the model is expected to have a greater abil-
ity to predict weekly anomalies than daily values when
producing sub-seasonal predictions (Vitart, 2014).

The performance of MJO prediction was evaluated
using the Real-time Multivariate MJO indices (RMMs:
Wheeler and Hendon, 2004). Reference RMMs were cal-
culated using the meridional wind at 850 and 200 hPa
from the ERA-Interim reanalyses and satellite-observed
OLR. RMMs for hindcasts were calculated as proposed by
Rashid et al. (2011). The metrics used for the MJO pre-
diction quality assessment were bivariate correlation and
RMSE (Lin et al., 2008) with lead times in days.

In addition to the single-member deterministic pre-
diction assessment, we evaluated the ability of the Mul-
tiple Configurations Ensemble (MCEN) mean prediction
formed by the six here-investigated BAM-1.2 configura-
tions with each configuration representing one ensem-
ble member. This was compared to an Initial Condition
Ensemble (ICEN) produced with an empirical orthogonal
function (EOF) perturbationmethodology (Mendonça and
Bonatti, 2009), using the configuration that showed the
best performance among the six evaluated configurations
for producing six ensemble members. The EOF-based
perturbation methodology is in operation at CPTEC for
extended range forecasts up to 15 days. The methodology
produces optimally perturbed analyses by applying the
EOFs to n time series formed by the differences between a
model run initialized with a control initial condition and
n model runs initialized with randomly perturbed initial

conditions. The initial random perturbations are drawn
from aGaussian distribution with zeromean and standard
deviation comparable to the model short length forecast
error, e.g. 3m⋅s−1 for the horizontal wind field compo-
nents, 0.6 K for the air temperature field, 1 hPa for the
surface pressure field and a vertical standard deviation
profile for the specific humidity derived from the ECMWF
background error covariance matrix (Derber and Bouttier,
1999). The EOF analysis is performed over the Northern
and Southern Hemispheres, over the tropical domain and
also regionally over southern and northern South Amer-
ica. The EOF perturbations are the ones associated with
the fast growth coefficients. To be used as optimal pertur-
bations, these fast growth modes are rescaled in order to
have a standard deviation of the same order of magnitude
as the initial perturbations. Finally, the optimal perturba-
tion is added and subtracted to/from the control analysis
and an ensemble of 2n initial perturbed states is produced.
A more detailed revision of the EOF-based perturbation
methodology used at CPTEC can be found inCunningham
et al. (2015).

The above-mentioned deterministicmetrics for precip-
itation andT2Manomaly hindcasts, aswell as for the hind-
cast MJO indices, were calculated for the ensemble mean
of the two equal-size (six members) ensembles (MCEN
and ICEN) to assess and compare the value of utilizing
multiple sub-seasonal predictions using two approaches.

In order to have an assessment of the differences in
the obtained scores for the investigated model config-
urations and the two ensemble mean approaches, 95%
confidence intervals were computed for the mean corre-
lation and RMSE (for precipitation and T2M anomalies),
globally averaged between 60◦N and 60◦S, and for the
bivariate correlation andRMSE (for theMJO) using a boot-
strap resampling procedure with replacement with 1,000
samples.
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3 HINDCAST QUALITY
ASSESSMENT

3.1 Deterministic evaluation of the six
investigated BAM-1.2 configurations

Figure 1 shows the correlation between predicted and
observed (GPCP) precipitation anomalies for the six
BAM-1.2 configurations (first six rows) and four lead times
(four columns representing week-1, week-2, week-3 and
week-4). The 10 hindcasts per extended austral summer
(5months times two start dates) over 12 austral summers
produce a sample with a total of 120 hindcasts. Applying
a two-sided Student's t-test, the correlation value of 0.2 is
statistically significant, different from zero at the 5% level.

For the six configurations, in general, the correlation
is high during the first week in most regions and drops
rapidly as lead time increases. This fall ismore pronounced
between the first and second week for all six configu-
rations as the forecasts extend beyond the deterministic
limit of predictability for many scales and we are con-
sidering only a single member for this initial analysis. It
is noted that all configurations show greater correlation
over the Northern Hemisphere than the Southern Hemi-
sphere during week-1 and week-2. This is because GCMs
are more likely to predict winter baroclinic weather sys-
tems and associated fronts (Zhu et al., 2014). As of the
third week, BAM-1.2 correlation values are smaller than
0.2 in practically all extratropical regions. This illustrates
that the predictive ability of BAM-1.2 over midlatitudes
beyond 15 days is limited for single-member hindcasts. For
weeks 3 and 4, significant correlation values are only seen
in the tropical Pacific Ocean, over a few areas in north-
ern South America and in the equatorial Atlantic Ocean.
The high correlation values in the first two lead times,
especially at week-1, are associated to the predictability
provided by the initial conditions, and the high correla-
tion values observed in the last two lead times over the
equatorial Pacific Ocean are mainly associated to the pre-
dictability provided by the El Niño/Southern Oscillation
(ENSO) and theMJO (Li and Robertson, 2015; de Andrade
et al., 2019). All six configurations show negligible corre-
lation values near the subtropical highs and desert regions
from week-1. These characteristics are also noticed in
other GCMs configured for sub-seasonal predictions (Zhu
et al., 2014; Li and Robertson, 2015; Wheeler et al., 2017;
de Andrade et al., 2019) and are associated with the low
capacity of GCMs to simulate small precipitation rates in
these regions.

The spatial correlation pattern is similar for the four
weeks of each of the six BAM-1.2 configurations. How-
ever, this pattern for the configurations with revised sim-
plified Arakawa–Schubert (deep convection) and moist

Bretherton–Park (boundary layer) parametrizations shows
slightly larger values in the first two weeks than for the
other configurations (Figure 1, first two columns of config-
urations 42ABC, 64ABC and 42ABG vs. first two columns
of configurations 42GBC, 64GBC and 42AMC). In week-3
and week-4 (last two columns of Figure 1), correlation
levels are similar in terms of both spatial pattern and
intensity for the six configurations. Increasing the verti-
cal resolution shows very little change in the precipitation
correlation levels at any lead time. For example, the 42
vertical level configuration, 42ABC (first row of Figure 1),
and the 64 vertical level configuration, 64ABC (second
row of Figure 1), have nearly identical correlation values
for most regions. The same is noticed for configurations
42GBC (fourth row of Figure 1) and 64GBC (fifth row of
Figure 1). Initialization of the soil moisture also shows
no increase in the correlation values for all four investi-
gated weeks. Hindcasts initialised with climatological soil
moisture (42ABC, first row of Figure 1) have the same cor-
relation levels as 42ABG (third row of Figure 1) hindcasts,
which were initialized with GLDAS soil moisture.

Figure 2 shows the precipitation anomaly RMSE spa-
tial features for the six BAM-1.2 configurations. High-
est RMSE values are found over the Intertropical Con-
vergence Zone (ITCZ), Indian Ocean, Maritime Conti-
nent, South Pacific Convergence Zone (SPCZ) and South
American Convergence Zone (SACZ), which are regions
of strong sub-seasonal variability (Liu et al., 2014). The
errors grow as lead time increases. As for the correla-
tion assessment, the errors grow more between week-1
and week-2 than from weeks 2 to 3. Again, configura-
tionswith revised simplifiedArakawa–Schubert andmoist
Bretherton-Park parametrizations have the fewest errors
and do not differ greatly from each other (rows 42ABC,
64ABC and 42ABG in Figure 2). Configurations withmod-
ified Grell–Dévényi parametrizations (rows 42GBC and
64GBC inFigure 2) also donot differmuch fromeach other
and have larger errors when compared to configurations
with revised simplified Arakawa–Schubert parametriza-
tions. That is, the revised simplified Arakawa–Schubert
parametrization seems to be better than the modified
Grell–Dévényi parametrization and increase of the vertical
resolution and soil moisture initialization do not reduce
the errors of the hindcasts in any lead time.

To better note the differences between the six config-
urations, the mean global correlation between 60◦N and
60◦S was calculated as a function of lead time (Figure 3a).
Vertical bars represent bootstrap 95% confidence intervals.
The six configurations show a near-exponential drop in
correlation as a function of lead time. The configurations
with the revised simplified Arakawa–Schubert and moist
Bretherton–Park parametrizations (black, orange and blue
lines) have the largest correlation values when compared
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F I GURE 1 Correlation between the predicted and observed (GPCP) precipitation anomalies for the six BAM-1.2 configurations
(42ABC, 64ABC, 42ABG, 42GBC, 64GBC and 42AMC) and two ensemble means (MCEN and ICEN) (rows) for week-1, week-2, week-3 and
week-4 (columns). The hindcasts were initialized within the extended austral summer period (November–March, 1999/2000–2010/2011) on
the dates shown in Table 1 [Colour figure can be viewed at wileyonlinelibrary.com]

to the other configurations in week-1 and week-2. Impor-
tant improvements are noticed when comparing the con-
figurations with revised simplified Arakawa–Schubert and
modifiedGrell–Dévényi deep convection parametrizations

at the first two lead times For example, 42ABC (black line)
has a global mean correlation equals to 0.45 at week-1 and
drops to 0.18 at week-2, whereas 42GBC (yellow line) has
a global mean correlation values equals to 0.40 at week-1
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F IGURE 2 Six configurations (42ABC, 64ABC, 42ABG, 42GBC, 64GBC and 42AMC) and two ensemble means (MCEN and ICEN)
(rows) RMSE precipitation anomaly (units are mm⋅day-1) for week-1, week-2, week-3 and week-4 (columns). The hindcasts were initialized
within the extended austral summer period (November– March, 1999/2000–2010/2011) on the dates shown in Table 1 [Colour figure can be
viewed at wileyonlinelibrary.com]

and drops to 0.14 at week-2. The 95% confidence intervals
for the 42ABC (black vertical bars on top of solid black
line) do not overlap the 95% confidence intervals for the
42GBC (yellow vertical bars on top of solid yellow line),

illustrating the superiority of 42ABC over 42GBC. How-
ever, the six configurations show similar correlation levels
at week-4. As noted in the previous figures, the increase
of vertical resolution does not result in an increase in
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F I GURE 3 Global mean (a) correlation between predicted and observed precipitation anomalies and (b) RMSE, for six BAM-1.2
configurations (42ABC, 64ABC, 42ABG, 42GBC, 64GBC and 42AMC) and two ensemble approaches (MCEN and ICEN) assessed against
GPCP averaged over the latitudinal band 60◦N–60◦S for four lead times (weeks 1 to 4). The hindcasts were initialized within the extended
austral summer period (November–March, 1999/2000–2010/2011) on the dates shown in Table 1. The vertical bars plotted around the four
lead times represent 95% confidence intervals produced using a bootstrap resampling procedure with replacement with 1,000 samples. These
vertical bars are slightly displaced from the exact lead time location in the horizontal axis to facilitate visualization [Colour figure can be
viewed at wileyonlinelibrary.com]

the correlation values. This feature is noticed when we
compare the 42ABC (black line) and 64ABC (orange line)
configurations or the 42GBC (yellow line) and 64GBC
(green line) configurations, which show practically the
same behaviour, with the differences between configura-
tions smaller than the 95% confidence intervals (vertical
bars). This is also noticed for soil moisture initialization,
where the 42ABG configuration (blue line) shows similar
correlation levels to the 42ABC configuration (black line).

The global RMSE mean between 60◦N and 60◦S
(Figure 3b) further emphasizes the differences between
the revised simplified Arakawa–Schubert and modified
Grell–Dévényi deep convection parametrizations. The
modified Grell–Dévényi parametrization (green and yel-
low lines) produces larger errors than the revised simpli-
fied Arakawa–Schubert parametrization (other lines) at all
lead times. The differences between the errors of these two
parametrizations aremuch larger than the 95% confidence
intervals (vertical bars) shown in Figure 3b, illustrating the
superiority of the revised simplified Arakawa–Schubert
over the modified Grell–Dévényi parametrization. The
configurations 42ABC (black line) and 64ABC (orange
line) show very similar values at the four lead times,
with overlapping 95% confidence intervals. This is also
noticed with the 42GBC (yellow line) and 64GBC (green
line) configurations. These results suggest that increas-
ing the vertical resolution does not decrease the RMSE.
The initialization of soil moisture also does not contribute
to the reduction of error (black vs. blue lines). An

interesting aspect is that the configuration with dry modi-
fied Mellor–Yamada boundary-layer parametrization (red
line) has the smallest error in the last two lead times.

Figure 4 shows the correlation between predicted and
reanalyses (ERA-Interim) T2M anomalies for the six con-
figurations and four lead times. The six BAM-1.2 con-
figurations show better prediction performance for T2M
anomalies than precipitation anomalies (see Figures 1 and
4). The correlation values decrease with lead time. The
highest correlation values are seen over cloud-free oceanic
regions (e.g. 42ABC row in Figure 4). However, significant
sub-seasonal correlation values exist over a large portion
of the global land domain. Over extratropical continental
regions, strong correlation values are observed in restricted
regions at weeks 3 and 4, for example, over the southeast
of the United States and some regions of Asia. Over tropi-
cal regions, correlation values are low in regions with high
convective activity (e.g. over the Maritime Continent).

The spatial correlation pattern is similar for the four
weeks of the six BAM-1.2 configurations. The difference
in performance between configurations with revised sim-
plified Arakawa–Schubert and modified Grell–Dévényi
deep convection parametrizations is not observed for
T2M (e.g. row 42ABC vs. row 42GBC in Figure 4).
Configurations with these two parametrizations have the
same performance level for the four weeks of lead time.
There are differences when comparing the two boundary
layer parametrizations. The configuration with the dry
modified Mellor–Yamada parametrization (row 42AMC
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F IGURE 4 Same as Figure 1, except for T2M anomaly [Colour figure can be viewed at wileyonlinelibrary.com]

in Figure 4) shows reduced performance than the other
five configurations at all lead times, which were con-
figured with the moist Bretherton–Park boundary-layer
parametrization. Increasing vertical resolution from 42
(rows 42ABC and 42GBC in Figure 4) to 64 (rows 64ABC

and 64GBC in Figure 4) levels seems to slightly reduce
prediction performance of extratropical T2M anomalies
in the first two weeks of lead times. Predictions with the
initialisation of soil moisture (row 42ABG in Figure 4),
rather than the climatology soil moisture (row 42ABC in
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F I GURE 5 Same as Figure 2, except for T2M anomaly (units are ◦C) [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 4), show a slight improvement in correlation in the
continental regions (Australia, South and North Americas
and Africa) at weeks 2 and 3 lead time.

Figure 5 shows the T2M anomaly RMSE spatial
features for the six BAM-1.2 configurations. In all
configurations, RMSE values grow with the lead time

and are generally lower over oceanic regions than over
continental regions for all four lead times. The high-
est RMSE values are noticed over Northern Hemisphere
regions where there are interactions between midlatitude
baroclinic systems, and tropical convective anomalies,
which are usually associated with theMJO and circulation
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F IGURE 6 Same as Figure 3, except for T2M anomaly [Colour figure can be viewed at wileyonlinelibrary.com]

teleconnections through Rossby waves (Stan et al., 2017;
Hu et al., 2019). Over northern Asia, high RMSE values are
also noticed. TheRMSEvalues are lower over the Southern
Hemisphere because there are fewer continental regions
than over the Northern Hemisphere, and baroclinic insta-
bility is lower at this time of the year in the Southern
Hemisphere. The latter makes the interaction between the
convective anomalies over tropical regions and circula-
tion over midlatitude regions less pronounced. As a result,
the sub-seasonal variability over the SouthernHemisphere
extratropical regions is also reduced during the austral
summer.

Configurations with the revised simplified
Arakawa–Schubert and modified Grell–Dévényi deep
convection parametrizations present similar RMSE pat-
terns (Figure 5). Some differences are found in specific
regions. For example, the 42GBC configuration shows
slightly lower RMSE values over southern South America
than the 42ABC configuration at week-3. The opposite is
noticed over the Iberian Peninsula. Similar features are
noticed for the increase in vertical resolution. Concern-
ing the initialization of soil moisture, subtle differences
are noticed between 42ABC and 42ABG, with slight
improvements over continental regions such as Australia,
South America, southern Africa and North America
with initialized soil moisture (42ABG). Large differences
are found when comparing configurations with moist
Bretherton–Park and dry modified Mellor–Yamada
boundary-layer parametrizations. For example, the RMSE
values are lower in high-latitude regions over North Amer-
ica and Asia for the 42AMC configuration when compared
to the 42ABC configuration. The opposite is over tropical
and medium latitude regions.

Figure 6 shows the global mean T2M anomaly correla-
tion (Figure 6a) and RMSE (Figure 6b) averaged between
60◦N and 60◦S as a function of lead time with 95%
confidence intervals (vertical bars). The six configura-
tions show a similar drop (rise) in correlation (RMSE)
as a function of lead time. The increase of vertical res-
olution from 42 to 64 levels, change of deep convec-
tion scheme and soil moisture initialization do not influ-
ence the levels of correlation and error values for T2M
anomaly predictions for the global perspective. This fea-
ture is noticed by the proximity or overlap of correla-
tion and RMSE lines of most investigated configurations
shown in Figure 6, with overlapping 95% confidence
intervals. Differences in performance levels are noticed
when comparing moist Bretherton–Park and dry modified
Mellor–Yamada boundary-layer parametrizations. The dry
modified Mellor–Yamada parametrization (red line) pro-
duces smaller correlation values and larger errors than
the other five configurations at all lead times, with the
differences between these configurations and the others
larger than the 95% confidence intervals (vertical bars)
illustrating the superiority of the other configurations.

Figure 7a,b showMJO bivariate correlation and bivari-
ate RMSE of all six BAM-1.2 configurations, respectively.
Vertical bars represent bootstrap 95% confidence intervals.
The MJO predictive ability is determined when the bivari-
ate correlation is lower than 0.5 and the bivariate RMSE
grows to

√
2. The lead times for these two thresholds to be

reached are usually found to be close (Rashid et al., 2011).
The bivariate correlation decreases with the increase in
lead time and crosses the threshold of 0.5 in 18–19 days
for all configurations, except for the 42AMC configuration
(red line), which uses the dry modified Mellor–Yamada
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F I GURE 7 (a) Bivariate correlation and (b) bivariate RMSE, for six BAM-1.2 configurations (42ABC, 64ABC, 42ABG, 42GBC, 64GBC
and 42AMC) and the two ensemble approaches (MCEN and ICEN) as a function of forecast lead time (in days). The hindcasts were
initialized within the extended austral summer period (November– March, 1999/2000–2010/2011) on the dates shown in Table 1. The vertical
bars around lead times 1 to 30 days plotted every 5 days represent 95% confidence intervals produced using a bootstrap resampling procedure
with replacement with 1,000 samples. These vertical bars are slightly displaced from the exact lead time location in the horizontal axis to
facilitate visualization. Note that two black vertical bars are plotted every 5 days, with the first of these bars corresponding to 42ABC and the
second corresponding to ICEN [Colour figure can be viewed at wileyonlinelibrary.com]

boundary-layer parametrization and has a much reduced
performance, with the bivariate correlation reaching the
0.5 threshold in 12 days. The bivariate RMSEs (Figure 7b)
increasewith lead time and each configuration reaches the
bivariate RMSE value of

√
2 at approximately the same

lead time as the bivariate correlation. The 42AMC con-
figuration crosses the threshold value of

√
2 in 11 days,

whereas the other five configurations cross the threshold
value of

√
2 in around 18 to 19 days. The overlap of the

95% confidence intervals (vertical bars) for most configu-
rations (except 42AMC) illustrates their similarity in MJO
predictive ability.

3.2 Deterministic assessment of two
investigated ensemble approaches

With the precipitation anomalies, T2M anomalies and
MJO hindcast evaluation of the six configurations shown
in the previous section, a preferred BAM-1.2 configuration
was determined for defining an ensemble sub-seasonal
forecasting system for CPTEC. The increase of the verti-
cal resolution from 42 levels to 64 levels did not result in
increase in predictive ability, therefore a vertical resolu-
tion of 42 levels was selected. The moist Bretherton–Park
boundary-layer parametrization was selected because
it contributed to a better performance than the dry
modified Mellor–Yamada boundary-layer parametriza-
tion, especially for T2M anomalies and MJO predictions.

The revised simplified Arakawa–Schubert and modified
Grell–Dévényi deep convection parametrizations showed
similar ability for T2M anomalies and MJO prediction
with a slight advantage to the modified Grell–Dévényi
parametrization for MJO prediction. On the other hand,
the revised simplified Arakawa–Schubert parametrization
showed a large advantage for sub-seasonal precipitation,
with higher correlation and smaller error values than
the modified Grell–Dévényi parametrization. Based on
this assessment, the revised simplified Arakawa–Schubert
deep convection parametrization was chosen. Soil mois-
ture initialization instead of the climatology led to sub-
tle improvements in T2M anomaly predictions in specific
regions (e.g. Australia). However, these improvements
were lower than expected and given limitations in the
availability of accurate real-time soil moisture data, the
use of climatological soil moisture was selected for the
BAM-1.2 system. Therefore, the chosen BAM-1.2 version
for ensemble sub-seasonal forecastingwas the 42ABC con-
figuration.

The possible physical reasons why the selected config-
uration (42ABC) performed better than the other inves-
tigated configurations, particularly in terms of the tested
boundary-layer and deep convection parametrizations
are as follows. The use of the moist Bretherton–Park
boundary-layer parametrization resulted in better MJO
and T2M predictions performance than the use of the dry
modified Mellor–Yamada boundary-layer parametriza-
tion. This is because themoist Bretherton–Park has several
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advantages compared to the dry modified Mellor–Yamada
parametrization. The main contribution of the moist
Bretherton–Park parametrization is to improve the rep-
resentation of the stable night boundary layer, where
the predominant physical process in flat areas such as
the oceans is the surface radiative cooling. The evolu-
tion of the stable nocturnal boundary layer depends on
the radiative cooling rate, and therefore the presence of
clouds is essential for reducing radiative loss. At sunrise,
the state of the stable boundary layer will be important
for the evolution of vertical instability and the mixing
boundary layer. Therefore, with higher or lower energy
released during the evolution of the stable boundary layer,
this energy surplus or deficit will contribute to the for-
mation of shallow and deep clouds, and consequently
will impact the daytime temperature and precipitation
cycle. The energy scales produced by these processes
directly or indirectly impact the atmospheric conditions
on the sub-seasonal time-scale. As for the comparative
performance of sub-seasonal precipitation predictions,
important differences were noted when changing the
deep convection parametrizations. The revised simplified
Arakawa–Schubert parametrization showed better perfor-
mance than the modified Grell–Dévényi parametrization.
This is likely due to the revision made by Han and Pan
(2011) in the simplified Arakawa–Schubert parametriza-
tion to suppress unrealistic grid-point storms due to
remaining instability in the atmospheric column. We
next further assess BAM-1.2 sub-seasonal hindcast quality
through a deterministic evaluation of ensemble mean pre-
dictions. Two ensemble types are evaluated and presented
here. The first ensemble consists of one ensemble mem-
ber from each of the six configurations previously pre-
sented, which was denominated Multiple Configurations
Ensemble (MCEN). The second ensemble was denomi-
nated Initial Condition Ensemble (ICEN) and is composed
of six members produced with the chosen 42ABC config-
uration consisting of a control member and five perturbed
members produced with an EOF method (Mendonça and
Bonatti, 2009; Cunningham et al., 2015).

The assessment of the ensemble mean of the two
ensemble types (MCEN and ICEN) revealed important
increase in global mean performance at four lead times for
precipitation anomaly predictions when compared to the
single-member assessment of the six investigated BAM-1.2
configurations (Figure 3), with the increase in perfor-
mance larger than the 95% confidence intervals (vertical
bars). The two ensemble mean approaches show similar
correlation levels (dashed lines in Figure 3a) and over-
lapping 95% confidence intervals (vertical grey and black
bars on top of dashed lines). This shows that BAM-1.2 per-
formance increases when more (six) members are used
to form an ensemble with the 42ABC configuration or

when using the six configurations as an ensemble. The
predictive ability of GCMs increases as the number of
members increases because the ensemble mean acts as a
filter for decreasing the uncertainties of the initial condi-
tions used to run themodel (Cheung, 2001). This is noticed
over several regions in the four investigated lead times
(e.g. Figure 1). For example, over extratropical regions at
week-2, over eastern South America at week-3 and over
northern South America at week-4. Precipitation anomaly
hindcasts also show lower RMSE values for both ICENand
MCEN at all four lead times (dashed lines in Figure 3b),
with the reduction of error much larger than the 95% con-
fidence intervals (vertical bars). Improvements are noticed
primarily over the ITCZ, Indian Ocean, Maritime Conti-
nent, SPCZ and SACZ regions (last two rows in Figure 2).
This suggests that the ensemble mean helps BAM-1.2
to better represent the sub-seasonal variability in these
regions. The same feature is noticed for the T2M hind-
casts ensemble means. The two ensemble means show
improved T2M anomaly performance when compared to
the single-member performance with increased correla-
tion values and decreased error (see last two rows in
Figure 4 and 5 and dashed lines in Figures 6). Improve-
ments in MJO forecast performance are also noticed
when using the two ensemble approaches. The predic-
tion ability limits are around lead times 18 and 19 days for
the single-member configurations, except for the 42AMC
which is much reduced (solid lines in Figures 7). For
the MCEN this limit increases to 21 days (dashed grey
line in Figures 7a,b) and to 20 days (dashed black line in
Figures 7a,b) for the ICEN. However, these improvements
are less prominent than those identified for precipitation
and T2M, because the 95% confidence intervals of the two
ensemble approaches largely encompass the 95% confi-
dence intervals of the single members of the individual
investigated configurations.

4 CONCLUSIONS

Vertical resolution and physical parametrizations (deep
convection and boundary layer) were changed in
BAM-1.2 to form five model configurations to deter-
mine the model configuration with greater performance
for sub-seasonal predictions. These components were
selected because these parameters have an important
impact on GCMs-simulated MJO (Zhang, 2005; Wang and
Chen, 2017; Wang et al., 2018). Given the soil moisture
initialization potential to increase the sub-seasonal pre-
diction performance (Koster et al., 2010; 2011; Guo et al.,
2012), a further configuration initialized with monthly
soil moisture from the previousmonth, rather than the cli-
matological mean soil moisture, was formed to investigate
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the impact of soil moisture initialization on BAM-1.2 pre-
dictive ability. The configuration with the best result was
selected to form an initial condition ensemble (ICEN)
with six members, one control member and five perturbed
members produced using an EOF-based methodology.
The six configurations, individually evaluated in the
first part of this work, were also used to form another
ensemble (multiple configurations ensemble, MCEN)
to compare the improvements inherent in the ensemble
mean between ICEN and MCEN.

All six BAM-1.2 configurations produced high pre-
cipitation and T2M anomaly correlation levels for the
first week and decreased correlation levels for weeks 2–4.
For weeks 3–4, moderate precipitation anomaly correla-
tion levels were restricted to the equatorial Pacific Ocean
region. This feature was also noticed in other models
(e.g. Li and Robertson, 2015; de Andrade et al., 2019).
Precipitation anomaly RMSE increased with lead time
and the highest RMSE values were found over regions
with strong sub-seasonal variability, for example, over the
ITCZ, IndianOcean,MaritimeContinent, SPCZ and SACZ
(Liu et al., 2014). For T2M, this characteristic was iden-
tified over the Northern Hemisphere where interaction
between anomalous convection and midlatitude circu-
lation anomalies are noticed (Hu et al., 2019). The six
BAM-1.2 configurations showed better prediction perfor-
mance for T2M anomalies than for precipitation anoma-
lies.

The increase of the vertical resolution from 42 to 64
levels did not result in an increase in predictive abil-
ity. Comparing 42ABC with 64ABC (revised simplified
Arakawa–Schubert deep convection configurations with
42 and 64 levels, respectively) and 42GBC with 64GBC
(modified Grell–Dévényi deep convection configurations
with 42 and 64 levels, respectively), it was noticed that the
correlation and RMSE showed nearly identical levels for
all lead times for precipitation anomalies, T2M anomalies
and MJO predictions. These results may sound contradic-
tory since other studies have shown that the increase in
vertical resolution contributes to improvements in predic-
tive ability in the sub-seasonal time-scale (Zhang, 2005;
Vitart, 2014). Other factors might be contributing to this
finding, for example, the use of initial conditions with only
37 vertical levels, which had to be interpolated to cover 42
and 64 levels.

BAM-1.2 configurations with revised simplified
Arakawa–Schubert deep convection parametrization
showed better performance than BAM-1.2 configura-
tions with modified Grell–Dévényi deep convection
parametrization for sub-seasonal precipitation prediction,
with the largest correlation levels found in the first two
weeks and the smallest RMSE in the four lead times.
However, these two parametrizations showed practically

the same performance for T2M anomalies and MJO, with
the commonly used performance thresholds reached at
18/19 days of lead time. The fact that the BAM-1.2 model
presents increased ability for sub-seasonal precipitation
forecast with the revised simplified Arakawa–Schubert
deep convection parametrization compared to modified
Grell–Dévényi and very similar ability for T2M and MJO
is intriguing. Han and Pan (2011) provided a revision of
the simplified Arakawa–Schubert deep convection in the
National Centers for Environmental Prediction's (NCEP's)
global forecast system. This revision aimed to suppress
unrealistic grid-point storms due to remaining instability
in the atmospheric column. This might be a possible rea-
son for the better BAM-1.2 performance in sub-seasonal
precipitation anomaly forecasting with revised simplified
Arakawa–Schubert deep convection parametrization.

The moist Bretherton–Park boundary layer
parametrization produced better performance for precip-
itation anomalies, T2M anomalies and MJO predictions
than the dry modified Mellor–Yamada boundary-layer
parametrization. The greatest differences were noticed
for MJO predictions, where the bivariate correlation
decreased more sharply as a function of lead time with
the configuration using the dry modified Mellor–Yamada
parametrization (42AMC) than for the other configu-
rations. For this, the 42AMC has correlation below 0.5
and RMSE above

√
2 around the 11th day of lead time.

Large discrepancies were also noticed for T2M anomaly
predictions when comparing 42AMC with the other
configurations.

We did not find important impacts of soil moisture
initialization when compared to climatological initializa-
tion on the predictive ability of precipitation anomalies
in the four investigated lead times. Slight improvements
were seen for T2M anomaly predictions in some continen-
tal regions. These improvements were smaller than those
found inKoster et al. (2010; 2011), Guo et al. (2012) and van
den Hurk et al. (2012), and might be related to differences
in the investigated seasons, time window, experiments
or/and even to low BAM-1.2 sensitivity to soil moisture
initialization.

With the evaluation of the six configurations, it was
possible to determine a configuration for use as CPTEC
sub-seasonal ensemble system. For this, the determined
configuration was the 42ABC. This configuration consists
of a model version at TQ126 spatial resolution, 42 ver-
tical sigma levels, revised simplified Arakawa–Schubert
deep convection parametrization, moist Bretherton–Park
boundary-layer scheme, initialization with climatological
soilmoisture, CLIRAD-LW,CLIRAD-SW,Morrisonmicro-
physics and the IBIS-2.6-CPTEC surface model.

The deterministic evaluation of ensembles (MCEN
and ICEN), through the computation of the ensemble
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means, presented considerable improvements when com-
pared to the single (control) member evaluation (42ABC).
For precipitation and T2M anomaly predictions, this
improvement was noticed mainly in extratropical conti-
nental regions. For MJO predictions, the ensemble means
extended by two days the MJO prediction ability limit (e.g.
up to 20 days). It is interesting to note that the MCEN
mean, formed from the six configurations, showed very
similar level of improvements to ICEN when compared to
the control member.

This work focused on determining a global CPTEC
model configuration for sub-seasonal prediction through
a deterministic assessment using a limited number of
ensemblemembers (six). The results presented in this arti-
cle suggest that BAM-1.2 has competitive performance to
other S2S models (Vitart et al., 2017; Lim et al., 2018; de
Andrade et al., 2019). In a forthcoming article, we plan to
perform a probabilistic assessment of the defined config-
uration with an increased number of ensemble members
and amore detailed comparison of BAM-1.2with other S2S
models. It is worthmentioning that although the extended
austral summer is a fundamental season for Brazil (partic-
ularly in terms of precipitation), further work is needed in
order to evaluate the performance of the Brazilian model
during other seasons for identifying regions where best
to trust the model for issuing operational sub-seasonal
predictions.
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