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ABSTRACT: Skillful and reliable predictions of week-to-week rainfall variations in South America, two to three weeks

ahead, are essential to protect lives, livelihoods, and ecosystems. We evaluate forecast performance for weekly rainfall in

extended austral summer (November–March) in four contemporary subseasonal systems, including a new Brazilian model,

at 1–5-week leads for 1999–2010. We measure performance by the correlation coefficient (in time) between predicted and

observed rainfall; wemeasure skill by the Brier skill score for rainfall terciles against a climatological reference forecast.We

assess unconditional performance (i.e., regardless of initial condition) and conditional performance based on the initial

phase of the Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO). All models display substantial

mean rainfall biases, including dry biases in Amazonia and wet biases near the Andes, which are established by week 1 and

vary little thereafter. Unconditional performance extends to week 2 in all regions except for Amazonia and the Andes, but

to week 3 only over northern, northeastern, and southeastern South America. Skill for upper- and lower-tercile rainfall

extends only to week 1. Conditional performance is not systematically or significantly higher than unconditional perfor-

mance; ENSO andMJO events provide limited ‘‘windows of opportunity’’ for improved S2S predictions that are region and

model dependent. Conditional performance may be degraded by errors in predicted ENSO and MJO teleconnections to

regional rainfall, even at short lead times.

KEYWORDS: South America; ENSO; Madden-Julian oscillation; Rainfall; Forecast verification/skill; Intraseasonal

variability

1. Introduction

Subseasonal to seasonal (S2S) variations in local- and

regional-scale rainfall present considerable hazards in the

tropics, through floods and meteorological droughts that re-

duce agricultural yields, limit hydropower generation, and

degrade human and ecosystem health. In monsoonal regions

where the seasonal cycle is strong and assumed to be predict-

able, crop sowing dates are tied to climatological rainfall onset.

Delays to the onset, or ‘‘false onsets’’ in which breaks in the

rains immediately follows onset, cause seeds to fail to germi-

nate and lead to substantial agricultural losses (e.g., Marteau

et al. 2011). Conversely, flooding after planting substantially

reduces yields; heavy rain during harvest can delay harvests

or damage crops (e.g., Coomes et al. 2016).

Historically, S2S forecasts, usually made from two to eight

weeks in advance, were judged to be less useful than numerical

weather predictions (NWP)—which provide shorter-range (1–

15 days) initial-condition driven predictions at daily scales—or

seasonal forecasts—which provide longer-range (3–6 months)

boundary-condition driven predictions at monthly scales (e.g.,

Hudson et al. 2011; Vitart et al. 2012). The perceived lack of

utility stemmed from poor S2S performance for weekly aver-

ages required by forecast users and targeted by producing

centers, to fill the lead-time and prediction-scale gap between

NWP and seasonal forecasts. Weekly rainfall variations have

proven difficult to predict at the 2–3-week lead times required

by users (e.g., farmers, hydroelectric dam managers) to mitigate

damage (e.g., Laux et al. 2008; Moron et al. 2009). S2S pre-

diction difficulties have been ascribed to the failure of forecast

models to represent key subseasonal phenomena, such as the

Madden–Julian oscillation (MJO) or the related boreal sum-

mer intraseasonal oscillation (Neena et al. 2014; Lee et al.

2015), and their teleconnections to tropical and midlatitude

rainfall and circulation. However, recent advances in model

resolution, physics and data assimilation have improved S2S

prediction quality, including for the MJO and its global tele-

connections (Vitart 2017; Vitart and Robertson 2018) and for

the onset and cessation of major monsoons (Bombardi et al.

2017), such that many sectors are reconsidering the potential

social and economic benefits of S2S predictions. The successful

application of S2S forecasts requires careful evaluation of

contemporary S2S prediction performance. Such evaluation

includes whether there are ‘‘windows of opportunity’’ for im-

proved S2S performance, based on regional- or large-scale

atmospheric circulations, as in seasonal forecasts during
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El Niño–Southern Oscillation (ENSO) events (e.g., Goddard

and Dilley 2005).

In South America, rainfall extremes have devastating costs

for human lives and livelihoods. In Brazil alone, extreme

rainfall events in 1979–2013 are estimated to have caused ap-

proximately 5000 deaths and billions of dollars in damage

(Vörösmarty et al. 2013; Hirata and Grimm 2018). In

Amazonia, approximately 70% of annual precipitation falls in

3–5 spells of intense precipitation that last 4–15 days (Rao and

Hada 1990), associated with intense moisture convergence

(de Oliveira Vieira et al. 2013). These heavy rains are linked to

atmospheric convection across scales, but particularly to the

presence, strength and location of the South Atlantic conver-

gence zone (SACZ; Carvalho et al. 2010). In turn, SACZ

variability is linked on decadal scales to Atlantic and Pacific

sea surface temperature variability, modulated by surface–

atmosphere feedbacks (e.g., Robertson and Mechoso 2000;

Grimm et al. 2007; Grimm and Saboia 2015); on interannual

scales to ENSO (e.g., Grimm and Tedeschi 2009); on intra-

seasonal scales to theMJO (e.g., Grimm 2019); and on synoptic

scales to midlatitude Rossby wavetrains (e.g., Hirata and

Grimm 2017), among other phenomena. The number and di-

versity of these relationships illustrate the challenge in un-

derstanding and predicting SouthAmerican rainfall variability.

Of particular relevance to this study is the ENSO teleconnec-

tion, which typically suppresses rainfall across equatorial South

America in El Niño years and enhances rainfall in La Niña
years. These signals are often of the opposite sign in subtrop-

ical South America, including heavily populated regions in

southeastern and southern Brazil, Uruguay, and northeastern

Argentina. The ENSO teleconnection is a key source of

seasonal predictability and prediction skill, particularly for

northern and southeastern South America (Bombardi et al.

2018), but its influence on S2S predictions remains unclear.

Subseasonal rainfall variability in South America has been

connected to tropical and midlatitude influences. The MJO

(Madden and Julian 1971; Zhang 2005) is the leading tropical

influence on intraseasonal scales: large-scale (zonal wave-

number 1–3), quasi-periodic (30–70 day) variability in tropical

convection and associated zonally overturning circulation that

propagates east along the equator, typically from the Indian

Ocean through the Pacific to the Western Hemisphere. Active

phases of the MJO over tropical South America cause stronger

and more persistent SACZ rainfall extremes, but also suppress

rainfall over subtropical South America; active MJO phases

over subtropical South America cause opposite-signed signals

(e.g., Carvalho et al. 2004; Grimm 2019). Subseasonal mid-

latitude influences on rainfall come primarily through Rossby

waves that propagate equatorward into tropical South

America, draw moisture from Amazonia and initiate SACZ

convection over land (Grimm and Silva Dias 1995; Liebmann

et al. 1999). The most intense rainfall extremes are linked to

coincidence and superposition of these tropical and midlati-

tude influences (Hirata and Grimm 2017). For example, MJO

convection in the Pacific can initiate an extratropical wave

train that propagates into the midlatitudes, then around South

America, and which eventually triggers heavy SACZ rain-

fall (Grimm 2019). Many of these influences modulate the

regional-scale meridional overturning circulation connecting

tropical and subtropical South America, creating opposite-

signed rainfall anomalies between these regions (e.g., Gan

et al. 2004; Cavalcanti et al. 2017).

Despite much research into mechanisms of South American

subseasonal rainfall variability with observations, reanalysis

data and model simulations, few studies have evaluated con-

temporary S2S forecasts of South American weekly rainfall

and its variability, or the teleconnections from major large-

scale phenomena such as the MJO. In a global-scale analysis,

Li and Robertson (2015) found that the European Centre for

Medium-range Weather Forecasts (ECMWF) S2S model

showed high performance—measured by correlation coeffi-

cients with observed rainfall above 0.2—for forecasts 1–

3 weeks ahead over northeastern Brazil. Coelho et al. (2018)

evaluated forecasts of autumn rainfall and proposed a verifi-

cation framework for South American precipitation sub-

seasonal predictions, finding that ECMWF performed well

over northeastern Brazil. de Andrade et al. (2018) evaluated

the ability of all S2S project models to reproduce global

austral summer subseasonal rainfall variability and identified

biases associated with model deficiencies in representing atmo-

spheric teleconnections. Hirata and Grimm (2017) estimated

that the U.S. National Centers for Environmental Prediction

(NCEP) model could represent rainfall extremes up to two

weeks ahead, but this result was based on only a handful of

case studies in 2010–11, and achieving useful skill required

statistical calibration.

We investigate S2S prediction quality for South American

weekly rainfall in four recent forecast models, including con-

ditional performance evaluation based on MJO and ENSO

phases to understand whether large-scale variability improves

S2S forecasts. Our conditional evaluation is distinct from

de Andrade et al. (2018), as we evaluate total forecast rainfall

in ENSO and MJO phases, rather than removing the linear

effect of those phenomena first. Our regional focus on South

America, our focus on austral summer, the major wet season in

most of South America, and our inclusion of a new Brazilian

model distinguish our study from previous studies that evalu-

ated S2S forecasts for austral autumn (Coelho et al. 2018), or

for all seasons (Pegion et al. 2019), or at global scales at which

regional features are difficult to distinguish (Li and Robertson

2015; de Andrade et al. 2018). We describe the S2S models,

verifying rainfall dataset and analysis techniques (section 2);

assess unconditional and conditional performance (section 3);

discuss the broader context and limitations of our findings

(section 4); and summarize our conclusions (section 5).

2. Data and methods

a. Subseasonal reforecasts

We use subseasonal reforecasts from the S2S Prediction

Project database (Vitart et al. 2017), as well as from the

Brazilian Global Atmospheric Model version 1.2 (BAM-1.2;

Guimarães et al. 2020) developed at the Centre for Weather

Forecast and Climate Studies (CPTEC). As the S2S database

comprises models with various reforecast start dates, lengths,

ensemble sizes and periods, we focus on threemodels to reduce
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the effects of these variations on our results: ECMWF (Vitart

2014), the Met Office (UKMO; MacLachlan et al. 2015), and

NCEP (Saha et al. 2014). ECMWF and UKMO perform re-

forecasts ‘‘on the fly’’ (i.e., in near–real time, alongside the

operational forecasts). We use reforecasts performed during

May 2017–April 2018, which corresponds to ECMWF Cycles

43r1 and 43r3 and the UKMO Global Coupled 2.0 configura-

tion. NCEP and BAM perform a ‘‘fixed’’ (frozen) reforecast

set. We use NCEP reforecasts from the Climate Forecast

System, version 2; we use BAM reforecasts from BAM-1.2

(Guimarães et al. 2020). We analyze reforecasts valid during

extended austral summer, November–March (NDJFM), for

November 1999–March 2010. We use only this common pe-

riod, even though some models have longer reforecasts avail-

able (see below and Table 1).

Each modeling center employs a different strategy for its

reforecast ensemble (Table 1). For example, NCEP has more

frequent initializations (daily) but a smaller ensemble (four

members), whereas UKMO has fewer initializations (every

6–8 days) but a larger ensemble (seven members). There are

two main approaches to compare models with variations in

ensemble size and initialization frequency; neither approach is

perfect or fair. The first is to evaluate each model for its own

initialization dates. For models with frequent initializations,

but small ensembles, this approach produces a larger sample of

forecasts but smaller ensembles, which may reduce determin-

istic or probabilistic forecast performance (e.g., de Andrade

et al. 2018). The second approach is to create lagged ensem-

bles, by combining, for a model with more frequent initializa-

tions, some or all reforecasts made between the dates of a

model with less frequent initializations. For instance, to create

an NCEP lagged ensemble corresponding to the UKMO en-

semble initialized on 9 November, we would combine the

NCEP reforecasts initialized 2–9 November, to create a

32-member ensemble (8 initializations 3 4 members per ini-

tialization). We would then evaluate the NCEP lagged en-

semble and the UKMO ensemble from 9 November onward.

Relative to the first approach, using lagged ensembles grows

the NCEP ensemble considerably (from 4 to 32 members), but

at the potential cost of performance, because ‘‘day 1’’ corre-

sponds to leads of 1–8 days in the lagged ensemble.

We create ECMWF and NCEP lagged ensembles that cor-

respond to the UKMO initialization dates, by combining

reforecasts made between the UKMO initialization dates

(e.g., between 2 and 9 November for the 9 November UKMO

initialization). We use the UKMO dates, rather than the less-

frequent BAM dates, because the ’15-day spacing of the

BAM dates would cause ECMWF and NCEP to lose up to two

weeks’ lead time, a considerable disadvantage for S2S refor-

ecasts. UKMO and BAM are analyzed with respect to their

own initialization dates. Thus, ECMWF, NCEP and UKMO

are analyzed for common validity periods (as weekly means),

while BAM is not. This results in a different verification sample

size for BAM (88–110 samples, depending on lead time) than

the other three models (220 samples). We discuss this issue

further in section 4. We create the ECMWF and NCEP lagged

ensembles using an 8-day window prior to and including the

UKMO initialization date—rather than, for example, using a

range of dates centered on the UKMO initialization date—to

mimic a real-time operational procedure. For ECMWF, we use

the last three initializations on or before the UKMO date to

form a 33-member lagged ensemble; for NCEP, we use the last

eight initializations on or before the UKMO date to form a

32-member lagged ensemble.

Our four ensembles have different sizes: UKMO (seven

members), ECMWF (33 members), NCEP (32 members) and

BAM (11 members). The optimum size of lagged ensembles is

an area of active research (e.g., DelSole et al. 2017; Trenary

et al. 2017, 2018). At short leads (e.g., 1–2 weeks) when the

signal-to-noise ratio is high and predictability arises from initial

conditions, ensembles lagged over shorter windows may out-

perform those lagged over longer windows. Conversely, at long

leads (e.g.,.2 weeks) when the signal-to-noise ratio is low and

predictability arises from slowly evolving atmospheric or oce-

anic conditions, ensembles lagged over longer windows (and

hence with more members) may outperform those lagged

over shorter windows (and hence with fewer members). S2S

requires a balance between short- and long-term performance.

Our 8-day window for ECMWFandNCEPmimics the strategy

used for NCEP in the operational NorthAmericanMultimodel

Ensemble (Kirtman et al. 2014). Similarly, the Subseasonal

Experiment (SubX) project compared models by lagging en-

sembles over a 7-day window (Pegion et al. 2019). Trenary

et al. (2017) and Trenary et al. (2018) found that NCEP S2S

ensembles lagged over a 5–10-day window showed optimium

performance for MJO and ENSO, respectively.

We test the sensitivity to our lagged-ensemble strategy by

building alternative NCEP and ECMWF ensembles, using for

ECMWF only the initialization closest to (but not later than)

the UKMO date, while for NCEP we use a 2-day window to

TABLE 1. For each model analyzed, the reforecast period, reforecast ensemble size, and reforecast initialization frequency. A list of

BAM initialization dates can be found in Table 1 of Guimarães et al. (2020).

Model Period Original ensemble Frequency

ECMWF 1997–2016a or 1998–2017b 11 members Every Monday and Thursday

NCEP 1999–2010 4 members Daily

UKMO 1993–2015 7 members 1st, 9th, 17th, and 25th of month

BAM 1999–2010 11 members On the ECMWF initial date closest to the

1st and 15th of the month

a For reforecasts performed in 2017.
b For reforecasts performed in 2018.
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create an eight-member lagged ensemble. This produces more

similarly sized ensembles for UKMO (seven members), NCEP

(eight members) and ECMWF (11 members). The verification

methods for these alternative ensembles are identical to those

described below for the primary NCEP (32 members) and

ECMWF (33 members) lagged ensembles. Unless otherwise

mentioned, all analysis uses the primary, larger lagged ensembles.

Note that our NDJFM analysis period refers to the validity

time of the forecasts, not the initialization time. All model data

are provided and analyzed on a common 1.58 3 1.58 horizontal
grid, although the original resolutions differ considerably.

Many diagnostics and metrics are computed as a function of

forecast lead time, expressed in weeks. For the ECMWF and

NCEP lagged ensembles, lead time refers to the time since the

UKMO initialization date to which the lagged ensemble

is referenced (e.g., to days since 9 November for the 2–

9 November lagged example, using the example above).

‘‘Week 1’’ refers to lead times 1–7 days, ‘‘week 2’’ to lead times

8–14 days, and so on.

b. Indices

To analyze conditional performance based on ENSO phase,

we divide the 1999–2010 period into quartiles based on the

monthly oceanic Niño index from the NCEP Climate

Prediction Center (https://origin.cpc.ncep.noaa.gov/products/

analysis_monitoring/ensostuff/ONI_v5.php). We use the up-

per quartile (14 months) for El Niño, the middle two quartiles

(28 months) for Neutral and the lower quartile (14 months) for

La Niña. We refer to El Niño and La Niña together as ‘‘strong
ENSO.’’ This differs from the ‘‘official’’ NOAA definition, by

which 16 months in our period were classified as El Niño, 24 as
La Niña and 15 as Neutral. We use our quartile-based defini-

tion to ensure equally sized strong and neutral ENSO samples.

To analyze conditional performance based on MJO phase,

we use the real-time multivariate MJO (RMM) indices from

Wheeler and Hendon (2004), which are derived from projec-

tions onto a pair of empirical orthogonal functions (EOFs)

of intraseasonal anomalies in latitude-averaged (158S–158N)

outgoing longwave radiation (OLR) and zonal winds at 850 and

200hPa.We use observedRMM indices to compute performance

conditioned on the MJO phase on the reforecast initialization

date. The observed RMM indices are calculated from National

Oceanic and Atmospheric Administration (NOAA) OLR data

and NCEP/National Center for Atmospheric Research (NCAR)

reanalysis winds; data are available from http://www.bom.gov.au/

climate/mjo/graphics/rmm.74toRealtime.txt. We use RMM indi-

ces computed from the reforecast OLR and zonal winds to

evaluate variations with lead time in the MJO teleconnection

to South American rainfall. RMM indices for all reforecasts

were computed following Gottschalck et al. (2010), which is a

modified form of the original Wheeler and Hendon (2004)

procedure. There are eight RMMphases. We pair MJO phases

to increase sample size: phases 8 1 1, 2 1 3, 4 1 5, and 6 1 7.

Phases 81 1 combine the wettest two phases over tropical South

America, whereas phases 4 1 5 are the driest (Gottschalck et al.

2010; Grimm 2019). For these phases, we include only days with

RMMamplitude$ 1; we refer to days with RMMamplitude, 1,

regardless of phase, as ‘‘weak MJO.’’

Table 2 shows the reforecast sample sizes for each ENSO

and MJO category in our conditional performance analysis.

c. Rainfall data

We validate reforecast rainfall against land-only rainfall esti-

mates from the Climate Hazards Group InfraRed Precipitation

with Stations (CHIRPS; Funk et al. 2015) dataset. CHIRPS

blends station observations of rainfall with infrared-based

satellite estimates that uses cold-cloud duration as a proxy

for rainfall. Most of our analyses are performed on weekly

average rainfall, following similar studies (Li and Robertson

2015; de Andrade et al. 2018), for which we average daily

CHIRPS values. Certain analyses are performed on daily

rainfall, which use the CHIRPS daily data directly; these are

noted in the text. Several recent studies have found that

CHIRPS compares well to gauge estimates of South American

rainfall, particularly in the northeast and southeast (e.g.,

Paredes-Trejo et al. 2017; Nogueira et al. 2018). CHIRPS data

are spatially interpolated to the models’ 1.58 3 1.58 grid.

d. Diagnostics and metrics

We evaluate reforecasts at lead times of 1–5 weeks. We

compute biases in themean reforecast rainfall, including biases

conditioned on MJO and ENSO phases, as a function of lead

time. We compute root-mean-squared errors (RMSE) by

comparing weekly rainfall anomalies from each ensemble

member (i.e., of the lagged ensembles for ECMWF and

NCEP) to CHIRPS weekly rainfall anomalies, then computing

the RMSE across all ensemble members (i.e., this is the RMSE

of all members, not the RMSE of the ensemble mean). This

provides a less biased comparison of model ensembles of dif-

ferent sizes, as used here. Using the RMSE of the anomalies,

rather than of the total value, excludes the RMSE contribution

from the lead-time-dependent systematic model bias. This

mimics an operational procedure, in which the systematic bias

in the real-time forecasts is removed using the reforecast cli-

matology. For each year in 1999–2010, we compute anomalies

relative to the weekly 1999–2010 climatology, excluding the

year for which the anomaly is computed; again, this mimics a

real-time procedure.

We measure model performance by the correlation coeffi-

cient (in time, hereafter ‘‘CC’’) between the reforecast and

CHIRPS anomalies; we measure skill by the Brier skill score

TABLE 2. For each model, the number of reforecast initializa-

tions in each ENSO andMJO category considered. The number of

initialization is the same in ECMWF, NCEP, andUKMO, since we

use lagged ensembles for ECMWF and NCEP referenced to the

UKMO dates. The number of El Niño and La Niña initializations

is exactly one-half the number of ‘‘strong ENSO’’ initializations,

by definition.

Condition ECMWF, UKMO, and NCEP BAM

Neutral ENSO 108 54

Strong ENSO 112 56

Weak MJO 72 38

MJO phases 8 1 1 26 14

MJO phases 4 1 5 38 22
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(BSS). CC and BSS are computed using on the models’ 1.58 3
1.58 grid. To determine if CCs are statistically significant, we

compute the critical CC value at the 5% significance level using

an effective sample size, which accounts for the lag-1 auto-

correlation between consecutive forecast initializations at the

same lead time (e.g., the lag-1 autocorrelation of week-1

rainfall at a given grid point), following Zwiers and von

Storch (1995).

BSSs are computed for terciles of weekly mean rainfall:

BSS5 12
BS

BS
ref

, (1)

where BS is the Brier score of the reforecast and BSref is the

Brier score of the reference forecast: a climatological forecast

in which the probability of each tercile is always 1/3. The Brier

score for a given tercile, at a given grid point, is

BS5
1

N
�
N

t51

(f
t
2o

t
)2 , (2)

where N is the number of forecasts (i.e., the sample size in

section a); ft is the probability that the weekly rainfall forecast

lies within this tercile of the reforecast distribution for this grid

point and this week of the year (i.e., number of forecast en-

semble members in this tercile, divided by ensemble size); and

ot is 0 if the observed rainfall was not in this tercile of the ob-

served rainfall distribution for this week of the year, at this grid

point, and 1 if it was. BSS . 0 indicates skill above the cli-

matological reforecast. Tercile boundaries are computed

separately for CHIRPS and the reforecasts; for the latter,

tercile boundaries are computed separately for each week of

lead time, using 1999–2010 data, excluding the year for

which probabilities are computed (as for the rainfall cli-

matology above).

To measure conditional performance by MJO or ENSO

phase, we compute the difference in CC between reforecasts

initialized in a strong phase and those initialized in a neutral or

weak phase (e.g., in MJO phases 41 5 relative to weak MJO).

MJO phase and amplitude are determined from the observed

RMM indices; thesemay differ slightly inmodels not initialized

the NCEP/NCAR product used for the observed RMM indices

(e.g., ECMWF is initialized from ERA-Interim), but we do not

account for this. For ECMWF and NCEP, we use the observed

MJO amplitude and phase on the UKMO initialization date,

since this the date to which the lagged ensembles are refer-

enced. This may bias the results, because members of the lag-

ged ensemble may have been initialized in a different phase or

with a different amplitude. The evaluation for UKMO and

BAM uses the RMM amplitude and phase on the respective

initialization dates for those models. To estimate the signifi-

cance of the conditional performance results, we randomly

resample (with replacement) from the distributions of avail-

able reforecasts 1000 times, for both the strong phase (e.g.,

phases 41 5) and the weak phase.We declare the difference to

be statistically significant if the CC for 70% of the distributions

for the strong phase lie outside the 90% confidence interval for

the CC value of the weak phase. This is equivalent to stating

that we are 70% confident that the strong phase has a skill that

is distinct from the weak phase (itself known with 90%

confidence).

Some diagnostics and metrics are averaged across six

relatively homogeneous rainfall regions (shown in Fig. 1a):

southernAmazonia (AMZ; 58–158S, 678–478W), Andes (AND;

158–408S, 758–678W), northeastern South America (NDE;

58–158S, 478–348W), northern South America (NSA; 08–128,
808–508W), Patagonia (PAT; 408–508S, 758–608W), and south-

eastern South America (SESA; 228–358S, 608–488W). Regions

are adapted from de Souza Custodio et al. (2017); we added

NSA to cover South America more completely. The relative

importance of austral summer precipitation in the annual cycle

for each region can be seen in Fig. 1 of Grimm (2011). All

statistics are computed on the original 1.58 3 1.58 model grid

and then averaged (i.e., these are the area-average statistics,

not the statistics of the area-average rainfall). To determine

the statistical significance of the regionally averaged CC, we

compare it to the regionally averaged critical correlation value,

adjusted for effective sample size.

3. Results

First, we examine S2S rainfall biases and RMSEs to

characterize the representation of climatological rainfall in

extended austral summer (section 3a). We then analyze

unconditional performance and skill for weekly rainfall using

CC and BSS, respectively (section 3b). To understand the

potential for conditional prediction of rainfall based on large-

scale tropical variability, we compute mean biases, errors and

performance conditioned on the phases of ENSO (section 3c)

and the MJO (section 3d). All analysis uses the larger lagged

ensembles for ECMWF (33 members) and NCEP (32 mem-

bers), except for the sensitivity test in section 3b.

a. Mean biases

Extended austral summer (NDJFM) climatological rainfall

in CHIRPS shows maxima in Amazonia and along the eastern

slopes of the Andes, with a northwest–southeast-oriented band

of high rainfall extending to the Atlantic coast of Brazil

(Fig. 1a). There are local minima over the northern coast of

South America, northeastern Brazil and the western slopes of

the Andes. The four S2S models develop mean rainfall biases

by week 1 (Figs. 1b–e). All models underpredict mean rainfall

near the CHIRPS maximum over Amazonia, with biases

largest in NCEP (Fig. 1c) and smallest in ECMWF (Fig. 1b).

All models also overpredict rainfall near the Andes, with bia-

ses higher in NCEP and UKMO (Fig. 1d) and smaller in

ECMWF and BAM (Fig. 1e). Mean rainfall drifts remarkably

little with lead time: week 5 (Figs. 1f–i) biases are highly similar

to those in week 1. Notable exceptions include the growth of

the BAM Amazonian dry bias (Fig. 1i) and of the UKMO

wet bias near the Andes (Fig. 1f). Overall, biases are lowest

in ECMWF, moderate in UKMO and strongest in NCEP

and BAM.

We compare RMSEs of ensemble-member weekly rainfall

anomalies against CHIRPS to the standard deviation of weekly

anomalies from CHIRPS (Fig. 2a). The latter is equivalent to

the RMSE of a climatological reference forecast; it is fairly
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spatially uniform, though higher near the mouth of the

Amazon River. RMSEs of model anomalies represent the

‘‘random’’ component of model error, separate from the mean

bias; both bias andRMSE vary with lead time. All models show

RMSEs much larger than the CHIRPS standard deviation

nearly everywhere (Figs. 2b–m), with higher RMSEs in

southern and eastern Brazil, particularly in NCEP (Figs.

2c,g,k) and UKMO (Figs. 2d,h,l). These errors are striking

FIG. 1. NDJFM (a) mean rainfall (mmday21) from CHIRPS and biases in mean rainfall (mmday21) with respect to CHIRPS from S2S

reforecasts from (b),(f) ECMWF; (c),(g) NCEP; (d),(h) UKMO; and (e),(i) BAM at week-1 lead time in (b)–(e) and week-5 lead time in

(f)–(i). Note that (a) uses a separate colorbar, to the right of the panel. Panel (a) identifies the six regions used elsewhere in themanuscript.
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FIG. 2. (a) Standard deviation in weekly mean CHIRPS rainfall anomalies for NDJFM, equivalent to the root-mean-squared error

(RMSE) of a climatological reference forecast; RMSEs in reforecast NDJFM weekly mean rainfall anomalies (mmday21) against

CHIRPS for (b),(f),(j) ECMWF; (c),(g),(k) NCEP; (d),(h),(l) UKMO; and (e),(i),(m) BAM at lead times of week 1 in (b)–(e), week 2 in

(f)–(i), and week 3 (j)–(m). Note that (a) uses a separate color bar, to the right of the panel.
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given that climatological rainfall is moderate and CHIRPS

variance is similar to elsewhere. Week-1 RMSEs are highest

in NCEP (Fig. 2c) and lowest in BAM (Fig. 2e). RMSEs

grow substantially with lead time in all models (Figs. 2b–m),

particularly in the south and southeast. By week 3, models

show a similar pattern of RMSEs that are slightly lower in

ECMWF (Fig. 2j) and BAM (Fig. 2m) and higher and more

biased toward southeast Brazil in NCEP (Fig. 2k) and

UKMO (Fig. 2l). Regional-scale RMSEs are similar in AMZ

(Fig. 3a), NDE (Fig. 3c), NSA (Fig. 3d) and SESA (Fig. 3f)

despite substantial differences in mean rainfall (Fig. 1):

AMZ has relatively high mean rainfall; SESA has moderate

mean rainfall and NSA and NDE have lower mean rainfall.

This demonstrates that models have as much difficulty, if not

more, predicting rainfall variations in wet regions as in dry

regions. High RMSEs in densely populated SESA are par-

ticularly concerning. Regional-mean RMSEs are generally

highest for NCEP and lowest for BAM and ECMWF.

b. Unconditional performance assessment

At week 1, all models have statistically significant CCs (at

5% level) across most of South America (Figs. 4a–d). CCs are

highest in northeastern Brazil, where mean rainfall is relatively

low, and in southeastern South America; CCs are lowest over

southern Amazonia and across central-eastern Brazil, near the

climatological SACZposition, wheremean rainfall is relatively

high. CCs decrease with lead time, as expected. At week 2, CCs

decline most strongly in NCEP (Fig. 4f) and BAM (Fig. 4h),

particularly in central-eastern Brazil, such that significant CCs

are limited to northern, northeastern, and southeastern South

America; CCs are near zero in southern Amazonia and

Argentina. ECMWF (Fig. 4e) and UKMO (Fig. 4g) maintain

significant CCs across most of South America. At week 3, in all

models CCs are significant only in northern South America,

northeastern Brazil, and a small region of southeastern South

America (Figs. 4i–l). At weeks 4 and 5, only isolated regions of

significant CCs remain in northeastern Brazil (not shown).

Regional-mean CCs suggest similar performance, with the

highest CCs in the climatologically drier NDE (Fig. 3i) and in

SESA (Fig. 3l) and lowest CCs in extratropical PAT (Fig. 3k)

and the climatologically wetter tropical AMZ (Fig. 3g). The

fourmodels perform similarly, althoughCCs are slightly higher

in ECMWFandUKMOand slightly lower inNCEP andBAM.

Statistically significant CCs in most models extend to week 1 in

PAT, to week 2 in AMZ and AND, to week 3 in NSA and

SESA, and to week 4 in NDE.

To explore the relationship between CCs and climatolog-

ical rainfall, for each model and lead time we produce dis-

tributions of gridpoint CCs binned by CHIRPS NDJFM

mean rainfall (Figs. 5a–c). We use values at all grid points in

in the domain (shown in Fig. 4), regardless of whether the CC

is statistically significant. CCs are higher at grid points with

low or moderate mean rainfall and lower at grid points with

high mean rainfall, for weeks 1–3 and for all models. A similar

analysis for CCs binned by the standard deviation of weekly

CHIRPS rainfall for NDJFM (shown in Fig. 2a) shows that all

models show higher CCs at points with low or moderate

subseasonal variability and lower CCs in regions of high

subseasonal variability (Figs. 5d–f).We return to these results

in section 4.

For regional-mean CCs and RMSEs, we assess the sensi-

tivity of forecast performance to our lagged-ensemble strategy

for NCEP (32 members) and ECMWF (33 members) using an

8-day window (section 2a). Figure 6 compares CCs andRMSEs

for these ensembles to CCs and RMSEs for alternative smaller

NCEP (8 members, 2-day lagged ensemble) and ECMWF

(11 members, one initialization) ensembles similar in size to

UKMO (7 members) and BAM (11 members). Variations in

CC and RMSE between the two sets of ensembles are generally

small, but for some regions and lead times they are meaningful.

At weeks 1 and 2, the larger ensembles perform slightly worse

than the smaller ensembles, with higher RMSEs in NDE

(Fig. 6c) and SESA (Fig. 6f) but similar CCs. Using a longer

window to create the lagged ensembles degrades performance

most at short leads, when predictability arisesmainly from initial

conditions. Beyond week 2, the larger ensembles slightly out-

perform the smaller ensembles, with higher CCs for NDE

(weeks 4 and 5), SESA (weeks 3–5), and AMZ (Fig. 6a; weeks 4

and 5). This is likely because using larger ensembles improves

the signal-to-noise ratio at longer leads. There is little change in

performance in AND, NSA, or PAT (Figs. 6b,d,e, respectively).

Since S2S forecasts are used mostly for lead times of two weeks

and beyond, we continue to use the larger NCEP and ECMWF

ensembles that perform slightly better at these lead times.

BSSs for upper-tercile rainfall demonstrate that all models

show poor skill beyond week 1, across most of South America

(Fig. 7). At week 1, ECMWF outperforms a climatological

forecast in eastern Brazil, southern Brazil, and northern

Amazonia (Fig. 7a). Byweek 2, however, BSSs are only slightly

above zero (Fig. 7e); by week 3 the model performs similarly to

or worse than the climatological forecast (Fig. 7i). NCEP shows

similar skill in eastern and southern Brazil at week 1 (Fig. 7b),

but fails to maintain skill at week 2 (Fig. 7f). NCEP also shows

negative BSS inAmazonia and near theAndes, even at week 1.

UKMO and BAM fail to outperform a climatological forecast

across most of South America even at week 1 (Figs. 7c,d, re-

spectively), with only isolated areas of positive BSS in eastern

and southern Brazil. Lower performance for BSS than for CC

suggests that while the ensemble-mean may capture the sign of

week-to-week rainfall variations at 1–2 weeks ahead, the en-

semble members struggle to capture shifts in the distributions

of the anomalies.

Regional-mean BSSs (Fig. 8) confirm that ECMWF consis-

tently outperforms a climatological forecast at week 1 for most

regions, with skill extending to week 2 over NDE (Fig. 8c) and

SESA (Fig. 8f). NCEP exhibits skill above a climatological

forecast in NDE at weeks 1 and 2, but shows little useful skill

elsewhere. UKMO and BAM show useful skill only in NDE at

week 1. Results for both gridscale and regional-mean BSSs are

similar for lower-tercile weekly rainfall (not shown). For nor-

mal (middle-tercile) rainfall, no model outperforms the cli-

matological forecast at any lead.

c. Conditional biases and performance based on ENSO

Before examining conditional performance by ENSO phase,

we first verify the predicted ENSO–rainfall relationship by
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FIG. 3. Regional-mean (a)–(f) root-mean-squared errors (RMSE;mmday21) and (g)–(l) correlation coefficients (CC)

between reforecast and observed (CHIRPS) anomalies for NDJFMweeklymean rainfall as a function of lead time from

all models, compared to CHIRPS. Regions are Amazonia (AMZ) in (a) and (g); Andes (AND) in (b) and (h); north-

eastern South America (NDE) in (c) and (i); northern South America (NSA) in (d) and (j); Patagonia (PAT) in (e) and

(k); and southeastern SouthAmerica (SESA) in (f) and (l).Metrics are computed on the original 1.58 grid, then averaged
over the region. The regions are shown in Fig. 1a. In (g)–(l), filled symbols show statistically significant CCs at the

5% level, based on the regionally averaged critical CC threshold, adjusted for effective sample size.

FEBRUARY 2021 KL INGAMAN ET AL . 155

Unauthenticated | Downloaded 01/25/21 02:27 PM UTC



compositing NDJFM rainfall anomalies by ENSO phase. A

realistic representation of the ENSO–rainfall teleconnection,

and hence also of the large-scale ENSO-driven seasonal cir-

culation, may be necessary for ENSO conditional performance

to exceed unconditional performance, particularly if models

can persist the initialized seasonal-scale ENSO-associated

circulation throughout the S2S forecast. To fairly compare S2S

and CHIRPS El Niño rainfall anomalies, we create a separate

CHIRPS composite for each week of S2S lead time, because

the forecast validity period shifts with lead time (i.e., the val-

idity period for week 3 differs from that for week 1). We

composite CHIRPS weekly mean rainfall for the same period

over which the S2S reforecasts are valid. We show the

CHIRPS composites for the validitywindows common toUKMO,

ECMWF and NCEP. The validity windows differ for BAM,

but the CHIRPS composites are qualitatively similar (not shown).

In El Niño, CHIRPS shows the expected pattern of lower

rainfall over Amazonia, northern South America, and north-

eastern Brazil, with enhanced rainfall over southern Brazil,

Uruguay and northeastern Argentina (Figs. 9a–c). The

CHIRPS ‘‘week 5’’ (Fig. 9c) and ‘‘week 1’’ (Fig. 9a) composites

differ somewhat, particularly in northeastern Brazil, due to

sampling a different set of weekly rainfall data, but the broad

pattern remains similar. At week 1, all S2S models reproduce

this broad pattern (Figs. 9d–g), but with variations in ampli-

tude: ECMWF shows weaker anomalies over land than

FIG. 4. Correlation coefficients (CCs) between the reforecast and observed (CHIRPS) anomalies for NDJFMweekly mean rainfall for

(a),(e),(i) ECMWF; (b),(f),(j) NCEP; (c),(g),(k) UKMO; and (d),(h),(l) BAM at (top) week-1, (middle) week-2, and (bottom) week-3

lead times. Only statistically significant CCs at the 5% level (adjusted for effective sample size) are shown.
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CHIRPS in both northern and southern Brazil (Fig. 9d); NCEP

shows weaker anomalies in southern Brazil and Uruguay, with

dry anomalies that extend too far south from northern Brazil

(Fig. 9e); UKMO is similar to NCEP in northern South

America, but with stronger positive anomalies in the south,

similar to CHIRPS (Fig. 9f); BAM overestimates the reduced

rainfall in northern Brazil (Fig. 9g).

Unlike the unconditional rainfall biases in Fig. 1, which

changed very little with lead time, the ENSO–rainfall tele-

connection drifts moderately by week 3 (Figs. 9h–k) and sub-

stantially by week 5 (Figs. 9l–o). In all models, by week 3 the

enhanced rainfall in southeastern South America weakens

substantially. In NCEP (Fig. 9i) and UKMO (Fig. 9j), en-

hanced rainfall stretches into central-eastern Brazil and en-

croaches into the region of dry anomalies in CHIRPS. These

results suggest that as these models drift from their initial

conditions, the region of anomalous subtropical ascent

stretches meridionally across the continent. The dry anomalies

in near-equatorial South America remain fixed spatially at

week 5, relative to week 3, but weaken considerably in BAM

(Fig. 9o)—reducing the dry bias from week 1—and weaken

slightly in UKMO (Fig. 9n), but are maintained in ECMWF

(Fig. 9l) and NCEP (Fig. 9m). BAM provides the best spatial

pattern of El Niño anomalies at week 5. In La Niña phases,

the anomalies are slightly weaker than, and opposite in sign

to, the El Niño anomalies in CHIRPS and the S2S models

(not shown).

Next, we assess conditional performance for reforecasts

started in strong ENSO phases—either El Niño or La

Niña—relative to performance for reforecasts started in neu-

tral ENSO phases (see section 2d for method and Table 2

for sample sizes). We evaluate conditional performance only

until week 3, as this is the limit of both conditional and

unconditional (Fig. 4) performance. In most regions, per-

formance in strong ENSO does not significantly differ from

performance in neutral ENSO (Fig. 10). However, ECMWF,

NCEP, and UKMO show significantly lower performance in

parts of central and eastern Brazil, where the models struggle

to capture the sign of the observed ENSO rainfall anomaly

(Fig. 9). BAM is the only model to develop a coherent region

FIG. 5. Box-and-whisker diagrams of the distribution of the CCs shown in Fig. 4, binned by either (a)–(c) the NDJFM mean CHIRPS

rainfall from Fig. 1a or (d)–(f) the standard deviation of weekly CHIRPSNDJFM rainfall from Fig. 2a. The diagrams each showCCs from

all S2S models for a given week of lead time: (left) week 1; (center) week 2; and (right) week 3. The filled color of the box indicates the

model (see legend). For each distribution, the yellow line shows the median, the box shows the interquartile range and the whiskers show

the range between the 5th and 95th percentiles of the distribution. The bins were chosen to give approximately equal sample sizes of grid

points.
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of higher performance in strong ENSO, at weeks 2 and 3 in

northeastern Brazil (Figs. 10h,l) where the model also captures

the sign and magnitude of the ENSO-related anomalous

rainfall (Fig. 9k).

Differences in regional-mean CC between strong ENSO and

neutral ENSO phases confirm that there are few statistically

significant differences in prediction performance at regional

scale (Fig. 11). Thus, ENSO events provide only limited

‘‘windows of opportunity’’ for improved S2S rainfall predic-

tions over South America, which are region and model

dependent.

d. Conditional biases and performance based on MJO

Before examining conditional performance based on the

MJO, we first analyze the MJO–rainfall teleconnection in

CHIRPS and the S2S models (Fig. 12). We composite daily

rainfall during strong (RMM amplitude$ 1) MJO days in two

phase pairs: phases 8 and 1 (8 1 1), when MJO convection is

enhanced over the tropical Western Hemisphere; and phases 4

and 5 (4 1 5), when MJO convection is enhanced over the

Maritime Continent and suppressed in the tropical Western

Hemisphere. We then average rainfall over all days in each

week of lead time in each pair of MJO phases, using the MJO

phase and amplitude on the validity date, to examine the in-

stantaneous MJO–rainfall teleconnection as a function of lead

time. We composite CHIRPS rainfall based on the observed

RMM indices, but composite the S2S models based on their

predicted RMM indices, as the aim is to study the simulated

MJO–rainfall teleconnection, not to evaluate RMM predic-

tions. We composite CHIRPS daily rainfall, using all days in

each pair of MJO phases during the S2S validity window for a

given week of lead time. This produces a separate CHIRPS

MJO composite for each week of S2S lead time. As for the

ENSO analysis in section 3c, we show the CHIRPS composites

for the ECMWF, UKMO and NCEP validity window; the

composites for the BAM validity window (not shown) are

qualitatively similar.

In CHIRPS, phases 8 1 1 have enhanced rainfall across

northern South America, particularly in Peru and northeastern

and central Brazil, with reduced rainfall in southeastern South

America, including southern Brazil, Uruguay and northeastern

Argentina (Fig. 12a). The magnitudes of these anomalies

change with the shift in validity period from week 1 to week

5 (Fig. 12b), due to sampling a different validity period and

hence a different set of MJO events, but the spatial pattern

remains similar. Phases 4 1 5 display the opposite pattern

(Figs. 12c,d). The CHIRPS composites differ from the

gauge-based MJO rainfall composites in (Grimm 2019),

particularly over northwest Brazil and parts of Peru and

Bolivia. We attribute these to differences in observation

density between datasets and in the compositing method, for

example Grimm (2019) uses bandpass filtering to isolate the

MJO signal, while we do not, due to the short length of the

S2S forecasts; Grimm (2019) also analyses a different period

FIG. 6.Differences in regional-meanCCs (solid lines; left-hand vertical axis) andRMSEs (dotted lines; right-hand vertical axis) between

two sets of NCEP (blue) and ECMWF (green) ensembles: the larger lagged ensembles constructed using an 8-day window, to produce a

32-member NCEP ensemble and a 33-member ECMWF ensemble; and the smaller ensembles that are more similar in size to the

7-member UKMO ensemble, with an 8-member NCEP ensemble (two initialization dates) and an 11-member ECMWF ensemble (one

initialization date). Differences are taken as theCC orRMSE for the larger ensembleminus that for the smaller ensemble, for eachmodel.

Note that the right-hand axis for RMSE is inverted so that degradations in CC (lower) or RMSE (higher) in the larger ensembles lie below

the dashed black line (at zero difference) and that improvements in CC (higher) or RMSE (lower) in the larger ensembles lie above the

dashed black line.
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(December–February, 1979–2009) than ours (November–

March, 1999–2010).

All models show substantial errors in location and amplitude

of theMJO–rainfall teleconnection, which growwith lead time.

At week 1 in phases 81 1, all models show the band of maximum

anomalous rainfall farther south and east than inCHIRPS, toward

southern Amazonia and central-eastern Brazil rather than over

the Amazon River (Figs. 12e,i,m,q), where predicted rainfall

anomalies are weak or near-zero. The area of observed reduced

rainfall in southeastern and southern Brazil and northeastern

Argentina is weak in ECMWF and NCEP and almost absent in

BAM, perhaps linked to the southward contraction of the en-

hanced convection away from the equator. OnlyUKMOcaptures

the dry anomalies. At week 5, the MJO–rainfall teleconnection

weakens in ECMWF (Fig. 12f), NCEP (Fig. 12j) and BAM

(Fig. 12q). In UKMO, the region of enhanced rainfall intensifies

and shifts north, while the area of reduced rainfall disappears

(Fig. 12n). NCEP develops a dry anomaly near the equator, op-

posite to the observed positive anomaly, which suggests an off-

equatorial shift in MJO convection.

All models show similar biases in phases 4 1 5 at week 1,

with southward (away from the equator) contractions in the

FIG. 7. Brier skill scores for NDJFM weekly mean rainfall above the upper tercile of each model’s reforecast distribution, computed

relative to a climatological forecast, for (a),(e),(i) ECMWF; (b),(f),(j) NCEP; (c),(g),(k) UKMO; and (d),(h),(l) BAM at lead times of

(top) week 1, (middle) week 2, and (bottom) week 3. BSS values above zero indicate skill above a climatological forecast. BSS is not

shown where CHIRPS rainfall is less than 1mmday21.
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regions of suppressed rainfall in the deep tropics. ECMWF

(Fig. 12g), UKMO (Fig. 12o) and BAM (Fig. 12s) produce

weak positive or near-zero anomalies over the Amazon River,

opposite to the observed negative anomalies. ECMWF and

NCEP (Fig. 12k) underestimate the positive anomalies in

southeastern South America, while UKMO overestimates

them; only BAM captures the amplitude. The rainfall tele-

connection weakens considerably by week 5, particularly in

ECMWF (Fig. 12h) and NCEP (Fig. 12l). UKMO (Fig. 12p)

exhibits the same northward shift of the main band of rainfall

anomalies seen for phases 81 1 at week 5 (Fig. 12n). BAMalso

shows much weaker anomalies at week 5 than at week 1, par-

ticularly over southeastern South America (Fig. 12t).

The week-1 results demonstrate that even when initialized

with a strong MJO circulation, all models quickly develop

strong biases in the spatial rainfall pattern, particularly over

the deep tropics. UKMO performs best for southeastern South

America, particularly at week 1, but worst for near-equatorial

rainfall. All models except UKMO strongly damp MJO-

associated anomalies with lead time and erroneously contract

the MJO-associated convection south of the equator.

To assess MJO conditional performance, for each MJO

phase pair we compute changes in regional-mean CC between

reforecasts started on days of observed strong MJO amplitude

and reforecasts started on days of observed weak MJO am-

plitude (see section 2d for method and Table 2 for sample

sizes). The interpretation of conditional performance based on

CCmay be complicated because (i) CC measures the ability to

predict variations between samples relative to themean, and so

measures the ability of a model to predict the variation in

rainfall between reforecasts with a given initialMJO phase, not

the mean rainfall in that MJO phase; (ii) although the refor-

ecasts in each sample have the same initial phase, the MJO

phases and amplitudes diverge with lead time, making the

sample less consistent and less distinguishable from the control

set of weak MJO events; (iii) the true initial MJO phases and

amplitudes are not consistent among the ECMWF and NCEP

ensembles, due to the lagged ensemble approach (section 2d).

With a few exceptions, variations in performance with MJO

phase are small and not statistically significant. For phases 81
1, performance increases significantly in NDE for all models in

week 1 (Fig. 13c), in NSA for BAM at all lead times except

FIG. 8. Regional-mean Brier skill scores for NDJFM weekly mean rainfall above the upper tercile of each model’s reforecast distri-

bution, computed relative to a climatological forecast, for (a) Amazonia (AMZ), (b) Andes (AND), (c) northeastern South America

(NDE), (d) northern SouthAmerica (NSA), (e) Patagonia (PAT), and (f) southeastern SouthAmerica (SESA).Metrics are computed on

the original 1.58 grid, then averaged over the region. The regions are shown in Fig. 1a.
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FIG. 9.MeanNDJFM rainfall anomaly (mmday21) in El Niño [upper quartile of the oceanic Niño index (ONI)]. For CHIRPS, we show

composites for validity windows corresponding to (a) week-1, (b) week-3, and (c) week-5 reforecasts, based onUKMO initialization dates.

For S2S models, we show composites based on the observed ONI at initialization, for (d)–(g) week-1, (h)–(k) week-3, and (l)–(o) week-5

lead times. Anomalies are computed relative to 1999–2010. Note that CHIRPS is available only over land, but model anomalies are shown

also over the ocean, to give larger-scale context.
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week 3 (Fig. 13d) and in SESA for NCEP in weeks 1 and 2 and

for ECMWF in week 1 (Fig. 13f). Performance increases sig-

nificantly for NCEP in NSA in weeks 3 and 4 (Fig. 13d),

despite an incorrect sign of theMJO-associated rainfall anomaly

(Fig. 12j).

For phases 4 1 5, the only notable significant changes are

declines in performance in UKMO in AMZ (Fig. 13g) and

SESA (Fig. 13l). In AMZ, UKMO predicts the MJO-

associated reduced rainfall anomalies well at week 1,

whereas in SESA the sign of the rainfall anomaly is correct but

the magnitude is too strong (Fig. 12o). NCEP also shows

reduced performance in SESA for week 1, where the MJO-

associated enhanced rainfall is reasonably well predicted

(Fig. 12k). We find little relationship between performance for

the MJO-associated rainfall anomaly and MJO conditional

rainfall prediction performance.

4. Discussion

S2S performance, measured by CC, and skill, measured by

BSS, for weekly extended austral summer rainfall across

South America is modest at best. While CCs are significant

FIG. 10. Difference in S2S prediction performance between strong and neutral ENSO phases, defined as the difference in CC (between

CHIRPS and S2S weekly rainfall anomalies) between NDJFM reforecasts started in strong ENSO phases and reforecasts started in

neutral ENSOphases for (a),(e),(i) ECMWF; (b),(f),(j) NCEP; (c),(g),(k) UKMO; and (d),(h),(l) BAMat (top) week-1, (middle) week-2,

and (bottom) week-3 lead times. Positive values indicate higher performance in strong ENSO phases than in neutral ENSO phases.

Crosses indicate where 70% of strong ENSO reforecast samples have a CC outside the 90% confidence interval for the CC of neutral

ENSO reforecast samples, based on resampling each dataset 1000 times (with replacement).

162 WEATHER AND FORECAST ING VOLUME 36

Unauthenticated | Downloaded 01/25/21 02:27 PM UTC



(at 5%) in most regions for weeks 1 and 2, by week 3 CCs are

significant only in northern, northeastern, and southeastern

South America. The BSS metric shows that models are unable

to skillfully predict upper-tercile or lower-tercile rainfall be-

yond week 1, except for ECMWF. Encouragingly, the regions

of highest performance by CC in eastern Brazil are reasonably

densely populated and agriculturally productive, such that in

these regions S2S forecasts may be useful for agricultural ap-

plications or dam management (e.g., to manage water for hy-

dropower or human consumption). However, skill, measured

by BSS, is relatively low in the most densely populated and

agriculturally productive regions, for example in the north-

eastern coastal region of Brazil and southern Brazil.

Our performance estimates agree with past assessments for

South America, including Hirata and Grimm (2017), who

found that NCEP could usefully predict extreme rain events in

2010–11 two weeks ahead. Coelho et al. (2018) found useful

S2S prediction performance in austral autumn over north-

eastern Brazil and southeastern South America, three to four

weeks ahead, as did de Andrade et al. (2018) for austral sum-

mer in the ECMWF model three weeks ahead. Pegion et al.

(2019) considered reforecasts from the SubXmodels initialized

in all months, demonstrating that several models had high CCs

for weekly rainfall over eastern Brazil three weeks ahead.

SubX performance over southeastern South America was

typically lower than that of the S2S models evaluated here,

which may be due to our focus on austral summer or to dif-

ferences in the models considered.

In all models analyzed here, unconditional performance is

highest in relatively dry regions and lowest in relatively wet

regions (Fig. 5). Unconditional performance is also higher in

regions of low tomoderate subseasonal variability and lower in

regions of higher subseasonal variability.Models may be better

able to predict rainfall where observed subseasonal variability

is low or moderate (e.g., in northeast Brazil and southeast

South America; Fig. 2a), as models may gain performance by

persisting an initialized circulation anomaly and the associated

rainfall anomaly. Comparing models to a persistence forecast,

FIG. 11. Difference in regionally averaged S2S performance between strong and neutral ENSO, defined as the difference in regionally

averaged CCs (between CHIRPS and S2S weekly rainfall anomalies) between NDJFM reforecasts started in strong ENSO phases and

reforecasts started in neutral ENSO phases. Filled symbols show where 70% of strong ENSO reforecast samples have a CC outside the

90% confidence interval for the CC of neutral reforecast samples, based on resampling each dataset 1000 times (with replacement).

Regions are (a) Amazonia (AMZ), (b) Andes (AND), (c) northeastern South America (NDE), (d) northern South America (NSA),

(e) Patagonia (PAT), and (f) southeastern South America (SESA). The regions are shown in Fig. 1a.
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FIG. 12. NDJFMmean rainfall anomaly (mmday21) for each pair of MJO phases, using only strongMJO days.

For CHIRPS, we show composites of strong MJO in phases (a),(b) 8 1 1 and (c),(d) 4 1 5, for validity windows

corresponding to week-1 reforecasts in (a) and (c) and week 5 reforecasts in (b) and (d), based on UKMO

initialization dates. For S2S models, we show composites of strong MJO during week 1 in (c),(g),(k),(o) phases

8 1 1 and (e),(i),(m),(q) phases 4 1 5, as well as during week 5 in (d),(h),(l),(p) phases 8 1 1 and (f),(j),(n),(r)

phases 4 1 5. MJO phases are based on observations for CHIRPS and on model output for the S2S models; the

latter are composited on MJO phase at the validity time, not the initialization time.
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FIG. 13. Difference in regionally averaged S2S performance between strong and weak MJO, defined as the difference in

regionally averaged CCs (between CHIRPS and S2S weekly rainfall anomalies) between NDJFM reforecasts started on strong

MJO days in (a)–(f) phases 8 1 1 and (g)–(l) phases 4 1 5, compared to reforecasts started on weak MJO days in any phase

(phase 0). Filled symbols showwhere 70%of strongMJO reforecast samples have a CC outside the 90% confidence interval for

the CC of weak MJO reforecast samples, based on resampling each dataset 1000 times (with replacement). Regions are

Amazonia (AMZ) in (a), Andes (AND) in (b), northeastern South America (NDE) in (c), northern South America (NSA) in

(d), Patagonia (PAT) in (e), and southeastern South America (SESA) in (f). The regions are shown in Fig. 1a.
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rather than to a climatological forecast, would test this hy-

pothesis. We chose to use a climatological reference to avoid

altering the reference forecast between models initialized on

different dates (i.e., to use the same reference forecast for all

models). BSSs would almost certainly be even lower if evalu-

ated against a persistence forecast, as persistence is typically

more skillful than climatology. An alternative evaluation

strategy would compare conditional S2S performance by MJO

and ENSO to a conditional climatological forecast, con-

structed using the probabilities of each rainfall category con-

ditional on MJO or ENSO phase. A conditional climatological

forecast would likely be more skillful than an unconditional

climatological forecast, reducing S2S skill estimates. As our

results show mostly insignificant differences between con-

ditionl and unconditional S2S performance, we expect that

using a conditional climatological reference would degrade

conditional performance.

Alternatively, models may perform more poorly in clima-

tologically wetter regions due to the high contributions to

mean rainfall from intense, short-lived events. Southern

Amazonia is a prime example, where up to 70% of annual

rainfall comes from a handful of events that last 4–15 days (e.g.,

Rao and Hada 1990). If these events are unpredictable at S2S

lead times, then S2S forecasts will suffer from the essentially

random nature of these events. Even at week 1, CCs in the

southern Amazonia are below 0.4 (Fig. 4) and BSSs are near

zero (Fig. 7) in all models. Yet another explanation for spatial

variability in performance is the density of verifying obser-

vations. CHIRPS calibrates satellite rainfall against gauge

measurements, but gauge density is much higher in northeastern

and southeastern South America—where performance is

highest—and lowest in southern Amazonia and near the

Andes—where performance is also lowest. Thus, model per-

formance may be artificially degraded by observational un-

certainty, raising the possibility that the relationship between

performance and climatological rainfall is spurious.

Our characterization of model performance is based on a

very limited period: 1999–2010. We chose to verify the four

models over their common period, which is limited by the

NCEP and BAM reforecast periods. This may penalize

ECMWFandUKMO,which have longer reforecasts (Table 1),

but we chose a clean comparison over a larger sample size. A

longer period would allow a more robust performance esti-

mate, particularly for the conditional analysis. The limited

sample size affects BAM most severely (Table 2). Further, we

chose to construct lagged ensembles for ECMWF and NCEP

relative to the UKMO initialization dates, using an 8-day

window. Our sensitivity test in Fig. 6, in which we use only

oneECMWF initialization and only a 2-day window for NCEP,

shows that using larger lagged ensembles penalizes ECMWF

and NCEP at short lead times (i.e., weeks 1 and 2, when the lag

is long compared to the lead time) but benefits those models at

longer lead times through an increased signal-to-noise ratio.

We recommend further, more comprehensive study of the ef-

fects of ensemble size and lagged ensembles on perceptions of

S2S prediction quality. There is likely no optimal method for

comparing models with variations in reforecast period, en-

semble size and initialization frequency, but it is important to

document the choices made and consider their effect on our

conclusions.

5. Conclusions

South American rainfall variability during the main wet

season (austral summer, November–March) is driven locally

by the SACZ, modulated by large-scale phenomena such as

ENSO on interannual scales, the MJO on subseasonal scales

and midlatitude Rossby waves on synoptic scales (e.g., Grimm

and Tedeschi 2009; Hirata and Grimm 2017; Grimm 2019).

Despite considerable research into the mechanisms of sub-

seasonal rainfall variability in South America, there are few

comprehensive assessments of contemporary prediction sys-

tems, although S2S forecasts may have useful performance out

to two to four weeks ahead in austral summer (Hirata and

Grimm 2017; de Andrade et al. 2018) and autumn (Coelho

et al. 2018). Successful prediction at these lead times would

allow users, such as farmers and dam managers, to take ef-

fective action to mitigate damage and protect lives, livelihoods

and ecosystems (e.g., Laux et al. 2008; Moron et al. 2009).

Recent advances in S2S prediction suggest such performance

may be possible (Vitart et al. 2016; White et al. 2017). We

evaluate mean biases, errors and prediction quality for weekly

November–March rainfall at 1–5-week lead times, using re-

forecasts of 1999–2010 from four S2S models: ECMWF,

UKMO, NCEP and BAM. For prediction quality, we evaluate

both unconditional performance and skill (i.e., using all re-

forecast data) and performance conditioned on the phase of

the MJO and ENSO. Conditional evaluations are essential to

identify potential ‘‘windows of opportunity’’: certain condi-

tions, such as local or large-scale circulation regimes, under

which forecast performance increases. We measure perfor-

mance by CC and skill by BSS (against a climatological ref-

erence forecast). ‘‘Useful performance’’ is defined as a CC

statistically significantly different from zero (at 5%); ‘‘useful

skill’’ is defined as BSS $ 0.

All four models show biases in mean South American

rainfall, most of which are established by week 1 and vary

little thereafter (Fig. 1). All models underestimate mean

Amazonian rainfall, where observed rainfall is high, and

overestimate rainfall near Andean topography. Root-mean-

squared errors grow more strongly with lead time and show

smaller spatial variations than mean biases, suggesting

models benefit from compensating errors in regions of low

bias (Fig. 2). Biases are smallest in ECMWF and largest in

NCEP; errors are smaller in ECMWF and BAM and larger

in NCEP and UKMO.

When measured by CC, performance is useful in most

models and regions at week 1 and week 2, although perfor-

mance is lower over southern Amazonia and near the Andes

(Figs. 4 and 7). By week 3, useful performance remains only

over northern, northeastern, and southeastern South America;

there is no useful performance beyond week 3. Performance is

higher in areas with low to moderate rainfall, or low to mod-

erate subseasonal rainfall variability, than in areas with high

rainfall or high subseasonal variability (Fig. 5). When mea-

sured by BSS, skill declines more quickly: only ECMWF shows
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skill in week 2, and then only for northern, northeastern, and

southeastern South America. Higher CC performance in

eastern SouthAmerica is encouraging for potential application

of S2S forecasts to the agricultural and hydropower sectors in

those regions, though skill (measured by BSS) is low in many

regions, including those with highest population density and

greatest agricultural production. BSS for upper-tercile rainfall

is higher in ECMWF and NCEP and lower in UKMO and BAM

(Figs. 7 and 8). UKMO and BAM show BSS , 0 at week 1 for

upper-tercile and lower-tercile (not shown) rainfall in almost all

regions, even at week 1. Nomodel has BSS. 0 for middle-tercile

rainfall (not shown). Higher values of CC than BSS suggests

that models capture the variability of weekly rainfall anomalies

better than the intensity distribution of rainfall anomalies.

At week 1, all models represent well the spatial pattern and

magnitude of ENSO-driven rainfall anomalies (Fig. 9). By

week 5, these anomalies weaken substantially, suggesting in-

ability to maintain the ENSO-driven anomalous meridional

overturning circulation. Even at week 1, models struggle to

capture the spatial pattern of MJO-driven rainfall anomalies:

the observed equatorial signal is poorly represented and con-

tracted to the south; the opposite-signed subtropical anomalies

are too weak (Fig. 12). These anomalies weaken further by

week 5, particularly in ECMWF and NCEP. UKMO performs

relatively well over southeastern South America, but poorly

for tropical South America. NCEP generates an equatorial

rainfall signal opposite in sign to observations. BAM and

ECMWF strongly damp MJO-associated anomalies with lead

time. With few exceptions, conditional performance by ENSO

(Fig. 11) and MJO (Fig. 13) phase does not substantially differ

from unconditional performance, which may be linked to the

errors in associated teleconnections.

Our results may be sensitive to limited common reforecast

period of the S2S models (1999–2010) and limited rainfall ob-

servations in interior South America. The former particularly

affects the conditional performance results; the latter particu-

larly affects the perceived low performance over southern

Amazonia and the Andes. S2S performance may be lower if

assessed against a persistence forecast, or a conditional cli-

matological forecast, rather than an unconditional climato-

logical forecast. Our results may also be affected by our choices

to compare models over their common period, not the full

period of each model. Our results are affected by our choice to

construct larger lagged ensembles for ECMWF and NCEP,

rather than ensembles of similar size to UKMO. This choice

slightly increases NCEP and ECMWF performance for lead

times beyond week 2, but slightly reduces performance for

weeks 1 and 2 (Fig. 6). Further research is needed to under-

stand the effects of analysis choices on comparisons of per-

formance in heterogeneous multimodel databases, such as the

S2S database.
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