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Abstract
This study assessed subseasonal global precipitation hindcast quality from all Subseasonal to Seasonal (S2S) prediction 
project models. Deterministic forecast quality of weekly accumulated precipitation was verified using different metrics and 
hindcast data considering lead times up to 4 weeks. The correlation scores were found to be higher during the first week 
and dropped as lead time increased, confining meaningful signals in the tropics mostly due to El Niño–Southern Oscillation 
and Madden–Julian Oscillation-related effects. The contribution of these two phenomena to hindcast quality was assessed 
by removing their regressed precipitation patterns from predicted fields. The model’s rank showed ECMWF, UKMO, and 
KMA as the top scoring models even when using a single control member instead of the mean of all ensemble members. 
The lowest correlation was shared by CMA, ISAC, and HMCR for most weeks. Models with larger ensemble sizes presented 
noticeable reduction in correlation when subsampled to fewer perturbed members, showing the value of ensemble predic-
tion. Systematic errors were measured through bias and variance ratio revealing in general large positive (negative) biases 
and variance overestimation (underestimation) over the tropical oceans (continents and/or extratropics). The atmospheric 
circulation hindcast quality was also examined suggesting the importance of using a relatively finer spatial resolution and a 
coupled model for resolving the tropical circulation dynamics, particularly for simulating tropical precipitation variability. 
The extratropical circulation hindcast quality was found to be low after the second week likely due to the inherent unpredict-
ability of the extratropical variability and errors associated with model deficiencies in representing teleconnections.
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1 Introduction

Weather predictions up to the first 2 weeks are mainly 
affected by the atmospheric initial conditions (e.g., Lor-
enz 1963; Kalnay 2003). On the other hand, monthly and 
seasonal climate predictions are substantially influenced by 
slowly varying boundary conditions, for instance sea sur-
face temperature (SST), soil moisture and snow cover (e.g., 
Palmer and Anderson 1994; Shukla 1998). In between these 

time scales is the subseasonal time range, that is an interme-
diate time scale considered until recently as a “predictability 
desert” (Vitart et al. 2012) where much of the memory of the 
atmospheric initial conditions is lost and where the boundary 
forcings do not have substantial influence on the outcomes 
(Vitart et al. 2017). Therefore, producing skillful subsea-
sonal predictions has been a great challenge for operational 
forecasters (Johnson et al. 2014).

Recently, motivated by the need to fill the “predictability 
gap” between weather and climate predictions, some studies 
have investigated the role played by possible sources of sub-
seasonal predictability. This investigation included several 
processes in the climate system, such as the Madden–Julian 
Oscillation (MJO) (e.g., Li and Robertson 2015; Liang and 
Lin 2018), El Niño–Southern Oscillation (ENSO) (e.g., Li 
and Robertson 2015; Liang and Lin 2018), teleconnections 
(e.g., Black et al. 2017; Vitart 2017), land surface initial 
conditions (e.g., Koster et al. 2010; Kumar et al. 2014), snow 
initial conditions (e.g., Lin and Wu 2011; Jeong et al. 2013), 
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and stratosphere-troposphere interaction (e.g., Baldwin 
et al. 2003; Garfinkel and Schwartz 2017). A more compre-
hensive understanding and a better representation of these 
potential sources of predictability together with improve-
ments in observation systems, computing resources, model 
development, and data assimilation techniques should result 
in potentially skillful subseasonal predictions (Vitart et al. 
2012).

In this context, the World Weather Research Programme 
(WWRP) jointly with the World Climate Research Pro-
gramme (WCRP) implemented the Subseasonal to Seasonal 
(S2S) prediction project with the main goal of improving 
prediction skill and physical understanding on the S2S time 
scale (Vitart et al. 2012; Robertson et al. 2015). For this 
purpose, an extensive database (Vitart et al. 2017) has been 
developed and currently archives near real-time ensemble 
predictions and hindcasts (reforecasts) up to approximately 
60  days from ten operational centres and one research 
institute, which are: the Australian Bureau of Meteorology 
(BoM), the China Meteorological Administration (CMA), 
the European Centre for Medium-Range Weather Fore-
casts (ECMWF), the Environment and Climate Change 
Canada (ECCC), the Institute of Atmospheric Sciences 
and Climate of the National Research Council (ISAC), the 
Hydrometeorological Centre of Russia (HMCR), the Japan 
Meteorological Agency (JMA), the Korea Meteorological 
Administration (KMA), the Météo-France/Centre National 
de Recherche Météorologiques (CNRM), the National Cent-
ers for Environmental Prediction (NCEP), and the United 
Kingdom’s Met Office (UKMO).

The S2S database has been used to investigate different 
scientific and modelling issues, such as the subseasonal 
prediction for the July 2015 West-European heat wave with 
the CNRM prediction system (Ardilouze et al. 2017), the 
subseasonal predictions of the December 2013 southern 
South America heat wave produced by BoM and CMA 
models (Osman and Alvarez 2017), the subseasonal predic-
tions of California precipitation during the unusual winters 
of 2015–2016 and 2016–2017 using ECMWF and NCEP 
prediction systems (Wang et al. 2017), the ability of the 
ECMWF prediction system to predict atmospheric rivers 
activity at S2S time scales (Baggett et al. 2017), the subsea-
sonal probabilistic predictions of boreal summer monsoon 
rainfall (Vigaud et al. 2017b) and North American precipi-
tation (Vigaud et al. 2017a) using extended logistic regres-
sion applied to ECMWF, NCEP, and CMA models, the MJO 
forecast in the CMA prediction system (Liu et al. 2017), the 
effect of the MJO on the Northern Hemisphere stratospheric 
polar vortex subseasonal predictions using ECMWF and 
BoM prediction systems (Garfinkel and Schwartz 2017), and 
simulations of the Asian summer monsoon (Jie et al. 2017) 
and of the MJO with its teleconnections (Vitart 2017) con-
sidering all S2S models, except the KMA model which was 

not available in the S2S database at the time of writing. Prior 
to the full implementation of the S2S database, global pre-
cipitation predictions have been analyzed through a seamless 
verification approach in the tropics and extratropics with 
BoM and ECMWF models (Zhu et al. 2014; Wheeler et al. 
2017) and also considering a submonthly prediction skill 
evaluation with ECMWF, NCEP, and JMA prediction sys-
tems (Li and Robertson 2015). Additionally, only a few stud-
ies have investigated the relationship between subseasonal 
precipitation and atmospheric circulation forecast quality by 
assessing, for instance, the NCEP (Zhang et al. 2016), ECCC 
(Liang and Lin 2018), and ECMWF (Olaniyan et al. 2018) 
prediction systems.

Although the aforementioned studies have addressed 
various subseasonal prediction issues there are several 
other research issues that still require investigation. For 
example, a comparative global precipitation hindcast qual-
ity assessment, exploring the common virtues and deficien-
cies in the subseasonal prediction range of all S2S mod-
els, is still undocumented. Furthermore, an evaluation of 
possible connections between the subseasonal global pre-
cipitation and atmospheric circulation hindcast quality for 
providing insight and a better understanding of subseasonal 
tropical–tropical and tropical-extratropical interaction 
mechanisms and their potential predictability also deserves 
a detailed assessment. Therefore, the aim of this study 
is to perform a quality assessment of subseasonal global 
precipitation hindcasts of all 11 S2S models, providing an 
unprecedented comparative framework for investigating 
the mechanisms and possible key sources of subseasonal 
predictability. Such an assessment also provides the oppor-
tunity for identifying the strengths and weaknesses in each 
model. The analysis is conducted using a weekly time frame 
for more properly evaluating the feasibility of subseasonal 
predictions (Li and Robertson 2015). Particular attention is 
devoted to prediction leads of 3–4 weeks because there is 
a rising interest from the scientific, operational and appli-
cations communities in improving predictions with a time 
range longer than the weather predictability limit and shorter 
than that of climate predictions (White et al. 2017).

Section 2 presents a brief description of the S2S database 
and the datasets used for hindcast quality assessment, along 
with the verification methods employed to evaluate the sub-
seasonal hindcast quality from all S2S prediction systems. 
Section 2 also provides a description of the methods used 
for investigating the contribution of particular sources of 
subseasonal predictability on hindcast quality. The results 
are described in Sect. 3 and Sect. 4 provides a summary and 
discussions.
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2  Data and methods

2.1  S2S database

This study used interpolated hindcasts at the regular 1.5° 
in latitude and longitude spatial resolution from 11 global 
prediction systems participating in the S2S prediction pro-
ject, which are made available through the S2S database 
maintained by the ECMWF. Each S2S model has a control 
member (using a single unperturbed initial condition) and 
a number of perturbed members produced for sampling 
uncertainty in the initial condition. Table 1 shows the main 
features of S2S models hindcasts (see Vitart et al. 2017 for 
additional information). Some models are coupled with an 
ocean and sea ice component, and others are uncoupled 
using persisted SST and sea ice anomalies [except ISAC 
that is the only prediction system with a slab ocean (Mal-
guzzi et al. 2011)]. Additionally, the 11 S2S prediction 
systems have different prediction time range, spatial reso-
lution, hindcast frequency, hindcast period, and ensemble 
size, except UKMO and KMA models that have exactly the 
same configurations. The only difference between UKMO 
and KMA prediction systems is the atmospheric initial 
condition (Noh et al. 2016). Furthermore, some hindcasts 
have a fixed date for model version (e.g., NCEP), whilst 
others have an on the fly production cycle (e.g., ECMWF) 
in which hindcasts are produced with the most up to date 
model version at the time of forecast issuance. For the 
latter configuration, we used hindcasts corresponding 
to model versions used in the years of 2016 (ECMWF, 
UKMO, KMA, ECCC, and HMCR) and 2017 (UKMO 
and KMA). Besides, JMA and ISAC have two model ver-
sions, but only those corresponding to the year of 2017 

were used. In spite of the differences among S2S models, 
it is possible to make inter-comparisons because there are 
enough common features (Jie et al. 2017; Vitart 2017).

In general, the S2S models do not have the same hindcast 
frequency and start dates preventing a multi-model evalua-
tion. Notwithstanding, it was still possible to select hindcasts 
from two initial conditions around the 1st and 15th day of 
each extended season month [i.e., extended boreal winter 
(from November to March) and extended boreal summer 
(from May to September)] over the 1999–2009 period to 
match all models with the same degrees of freedom and 
common period making the single model inter-comparison 
meaningful. This procedure resulted in a total of 110 pairs 
of hindcasts and corresponding observations for each of the 
11 S2S models. This is a considerably larger sample than 
usually available for performing similar hindcast quality 
assessment with seasonal prediction models, which typi-
cally have around 30 pairs of hindcasts and corresponding 
observations.

The assessment was performed using 24-h accumulated 
precipitation and stream function at 200 hPa computed from 
24-h instantaneous zonal and meridional wind components. 
Both zonally symmetric (ZSPSI) and asymmetric (ZAPSI) 
stream function components were analyzed in order to pro-
vide a full assessment of the global rotational circulation. 
The symmetric component represents the 200 hPa stream 
function itself prior to removing the zonal mean, which 
is required for obtaining the asymmetric component. The 
tropical atmospheric circulation shows a substantial zonally 
symmetric response due to locally forced equatorial Kelvin 
and Rossby waves (Clarke 2008). On the other hand, the 
observed extratropical mean flow varies strongly with longi-
tude, which in turn has a profound effect on the location and 
strength of teleconnections (e.g., Branstator 1983). Thus, 

Table 1  The main features of the S2S models hindcasts (Vitart et al. 2017)

a Hindcasts are produced on the fly (model version is not fixed)

S2S models Time 
range 
(days)

Spatial resolution Hindcast frequency Hindcast period Ensemble size Ocean coupled Sea-ice coupled

ECMWFa 46 Tco639/Tco319, L91 2/week Past 20 years 11 Yes No
UKMOa 60 N216, L85 4/month 1996–2009 3 Yes Yes
NCEP 44 T126, L64 Daily 1999–2010 4 Yes Yes
BoM 62 T47, L17 6/month 1981–2013 33 (3 × 11) Yes No
CNRM 61 T255, L91 2/month 1993–2014 15 Yes Yes
CMA 60 T106, L40 Daily 1994–2014 4 Yes Yes
KMAa 60 N216, L85 4/month 1996–2009 3 Yes Yes
ISAC 31 0.75° × 0.56°, L54 Every 5 days 1981–2010 5 No No
JMA 33 TL479/TL319, L100 3/month 1981–2010 5 No No
ECCC a 32 0.45° × 0.45°, L40 Weekly 1995–2012 4 No No
HMCRa 61 1.1° × 1.4°, L28 Weekly 1985–2010 10 No No
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removing the zonal mean of stream function by computing 
ZAPSI at 200 hPa can better reveal essential extratropical 
atmospheric circulation characteristics, such as barotropic 
Rossby wave propagation (e.g., Jin and Hoskins 1995; Held 
et al. 2002; Grimm and Reason 2015).

2.2  Reference datasets used for verification

The observational reference used for verifying precipitation 
hindcasts was the daily analysis data of the Global Precipi-
tation Climatology Project (GPCP) version 1.2 (Huffman 
et al. 2001) with regular 1° in latitude and longitude spatial 
resolution over the 1999–2009 period. The GPCP dataset is 
a blended product derived from both observational station 
data and satellite measurements provided by the National 
Center for Atmospheric Research (NCAR). This dataset 
was regridded to the regular 1.5° in latitude and longitude 
spatial resolution through linear interpolation to match the 
S2S models grid here investigated and used to obtain weekly 
accumulated precipitation. Following Zhu et al. (2014) and 
Wheeler et al. (2017), the analysis is limited to the range 
between 80°N and 80°S due to known problems in the GPCP 
data at high latitudes (Bolvin et al. 2009). Atmospheric cir-
culation hindcasts were verified using 200 hPa ZSPSI and 
ZAPSI computed from zonal and meridional wind compo-
nents at 00Z provided by the ERA-Interim reanalysis (Dee 
et al. 2011) at the same regular 1.5° in latitude and longitude 
spatial resolution as the investigated S2S models over the 
1999–2009 period. The sensitivity level to the choice of the 
reanalysis was evaluated using two other datasets linearly 
interpolated from a 2.5° × 2.5° to a 1.5° × 1.5° horizontal 
grid resolution: the Japanese 55-year reanalysis (JRA55) 
(Ebita et al. 2011) and the National Centers for Environ-
mental Prediction (NCEP)—Department of Energy (DOE) 
reanalysis 2 (Kanamitsu et al. 2002).

2.3  Forecast quality assessment

Deterministic hindcast quality was assessed using lin-
ear correlation (Pearson’s correlation coefficient), mean 
error (or bias) and variance ratio (i.e., the ratio between 
the predicted variance and the observed variance). These 
three deterministic measures were calculated between the 
ensemble mean of all hindcast members (including the 
control member and the perturbed members, hereafter 
referred to as the ensemble mean) and the correspond-
ing observation/reanalysis. Linear correlation evaluates 
prediction quality by looking at the phase relationship 
between the predicted and observed data. In other words 
the correlation coefficient provides an assessment of the 
strength of the linear association between predictions and 
observations. The other two measures diagnose systematic 
errors that are not revealed with the correlation coefficient 

alone. It is important to note that large differences in 
ensemble size among models may affect model inter-
comparison when using the ensemble mean by favoring 
models with larger ensemble size (Vitart 2017). Hence, in 
order to have a fair comparison, we also analyzed the same 
verification metrics using only the control member and a 
three members ensemble mean of each model (i.e., the 
minimum common number of available ensemble mem-
ber among the 11 investigated S2S models as shown in 
Table 1, which is hereafter referred to as the 3M ensemble 
mean). This comparison of the hindcast quality depend-
ence on the ensemble size provides relevant information 
about the value of ensemble prediction and its generation 
methods (Jie et al. 2017; Vitart 2017). The limited ensem-
ble size for some models prevented the expansion of the 
comparative hindcast quality assessment using probabil-
istic measures.

All hindcast quality measures were computed over 110 
selected start dates, applied separately for each grid point, 
lead time, and extended season, considering four weekly 
precipitation accumulation periods and average atmospheric 
circulation: days 1–7 (week-1), 8–14 (week-2), 15–21 (week-
3), and 22–28 (week-4). Li and Robertson (2015) used the 
same four weekly periods to evaluate the precipitation 
hindcasts produced by ECMWF, NCEP, and JMA ensem-
ble prediction systems. According to these authors, as the 
subseasonal range is beyond the weather prediction limit, 
the weekly scale is an appropriate choice to remove part of 
the weather noise. The hindcast anomalies were obtained 
by subtracting their respective climatology depending on 
the start date and lead time. The climatology was computed 
in a cross-validated way leaving 1 year out (Vitart 2017) 
for each ensemble sampling (i.e., for the ensemble mean of 
all available members, for the control member, and for the 
ensemble mean of three members). In this cross-validation 
procedure the climatological means of hindcasts initialized 
at the same start date and lead time are computed over the 
common period (1999–2009) excluding the target year to be 
verified. For example, for the week-1 hindcast prediction ini-
tialized on 1 January 1999, all week-1 hindcast predictions 
initialized on 1 January 2000–2009 are used to compute the 
climatological mean, which is then used to determine the 
anomaly for week-1 in 1999. The observed and reanalysis 
anomalies were calculated in the same way. Moreover, the 
corresponding hindcast climatologies of each of the three 
BoM model versions (Hudson et al. 2013) were computed 
separately, but the anomalies are the same when using the 
BoM multi-model climatology as also reported by Zhu et al. 
(2014). Statistical significance of the computed correlation 
coefficients was analyzed using a two-sided Student’s t test 
(Wilks 2006) with n − 2 degrees of freedom for the rejec-
tion of the null hypothesis of null correlation consider-
ing a p value of 0.05 (5% level). The effective number of 
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independent samples (n) was estimated taking into account 
autocorrelation properties of temporal series as proposed by 
Livezey and Chen (1983).

2.4  Sources of subseasonal predictability

ENSO and the MJO are recognized as the dominant modes 
of interannual (e.g., Drosdowsky and Chambers 2001) and 
subseasonal (e.g., Mo and Nogues-Paegle 2005) tropical cli-
mate variability, respectively, with well established impact 
on global precipitation (e.g., Ropelewski and Halpert 1987; 
Jones et al. 2004). The role of these particular climate driv-
ers on the S2S models hindcast quality was investigated 
using indices commonly employed for evaluating ENSO 
and MJO activities (e.g., Li and Robertson 2015; Liang and 
Lin 2018).

The ENSO activity was measured by the Niño-3.4 index 
defined as the SST anomaly over the Niño-3.4 region 
(5°S–5°N, 120°W–170°W) (Trenberth 1997). The ENSO 
index was computed using weekly mean SST obtained from 
the daily Optimum Interpolation SST version 2 (OISST.v2) 
(Reynolds et al. 2007) dataset sourced by the National Oce-
anic and Atmospheric Administration (NOAA) at the regular 
0.25° in latitude and longitude spatial resolution over the 
1999–2009 period. The daily OISST.v2 was linearly inter-
polated to the regular 1.5° in latitude and longitude spatial 
resolution and used to obtain 7-day mean SST periods for 
every single day of the year. Additionally, the SST seasonal 
cycle was removed by computing cross-validated anomalies 
(i.e., subtracting the time mean leaving 1 year out) and the 
ENSO index was normalized by the weekly cross-validated 
standard deviation.

The MJO activity was quantified by the Real-time Mul-
tivariate MJO (RMM) daily index components (RMM1 and 
RMM2) (Wheeler and Hendon 2004, hereafter referred as 
WH04). The index was obtained by projecting near-equato-
rially averaged normalized daily anomalies of zonal wind 
(850 hPa and 200 hPa) and outgoing longwave radiation 
(OLR) at the top of the atmosphere onto the two pre-com-
puted leading empirical orthogonal functions from WH04. 
The computation of the RMM index follows the method-
ology described in WH04 and Gottschalck et al. (2010). 
The used zonal wind data was from the reanalysis datasets 
mentioned in Sect. 2.2 and the interpolated OLR was from 
NOAA (Liebmann and Smith 1996) covering the 1999–2009 
period. The data were analyzed using a horizontal grid reso-
lution of 2.5° × 2.5°, corresponding to the same 144 longi-
tudinal points of WH04’s pre-computed eigenvectors. Daily 
anomalies were obtained by subtracting the cross-validated 
seasonal cycle from the total field and next the 120-day mean 
of the previous 120 days of each day was removed in order 
to filter the low-frequency variability such as that associated 
to ENSO. Before data projection, the zonal wind and OLR 

anomalies were near-equatorially averaged (15°S–15°N) 
and divided by its respective observed normalization factor 
(computed by WH04 having the values of 15.1 W m−2 for 
OLR, 1.81 m s−1 for 850 hPa zonal wind, and 4.81 m s−1 
for 200 hPa zonal wind) as described in Gottschalck et al. 
(2010). Finally, the projected components were normalized 
by their respective observed standard deviations estimated 
by WH04 to generate the RMM1 and RMM2 time series. 
Weekly values for each RMM component were also com-
puted using a similar procedure for obtaining weekly SST.

In order to diagnose the impact of ENSO and MJO on 
subseasonal global precipitation variability, a linear regres-
sion analysis between GPCP weekly accumulated precipita-
tion anomalies and observed weekly mean ENSO and MJO 
indices was conducted. This approach allows the identifica-
tion of ENSO and MJO-related linear patterns in observed 
weekly precipitation anomalies and then the investigation of 
their possible contributions to S2S models hindcast quality 
by removing the identified variability that is linearly depend-
ent on ENSO and MJO from the predicted fields. Regressed 
values were scaled to a value of one standard deviation of 
the corresponding index as in Lo and Hendon (2000). The 
statistical significance for the obtained linear regression 
coefficients was assessed through a two-sided Student’s t 
test considering a p value of 0.05 (5% level). To account for 
the autocorrelation in the weekly temporal series, the sample 
size was corrected to the effective sample size following 
Livezey and Chen (1983).

3  Results

In this section, subseasonal global precipitation hindcast 
quality is assessed for all S2S models as a function of weekly 
lead times using the metrics described in Sect. 2.3. The 
hindcast quality assessment for the May–September period 
generally corroborates findings for the November–March 
period. For this reason and for brevity, this paper mainly dis-
cusses the results for the November–March period, with the 
results for the May–September period mentioned when nec-
essary throught the paper and made available in the Online 
Resource 1. The assessment starts with the correlation 
between hindcast and observed accumulated precipitation 
anomalies because this is the simplest and most commonly 
used deterministic verification metric (e.g., Zhu et al. 2014; 
Li and Robertson 2015; Wheeler et al. 2017). Then, sys-
tematic errors of the hindcast accumulated precipitation are 
investigated. In addition, an assessment of the subseasonal 
atmospheric circulation hindcast quality is presented in order 
to evaluate the model’s ability to represent the observed 
atmospheric circulation patterns and possible connections 
with subseasonal precipitation prediction quality.
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3.1  Linear association assessment

Figure  1 displays the correlation between the hindcast 
ensemble mean and the observed accumulated precipitation 
anomalies for each S2S model in different weekly lead times 
initialized during November–March over the 1999–2009 
period. A similar figure for the hindcasts initialized dur-
ing May–September is available in the Online Resource 
1—Fig. 1. Figure 1 shows the highest correlation scores for 
week-1. The scores drop as lead time increases, attaining 
meaningful signals mainly on the tropical oceanic regions 
as reported by Li and Robertson (2015). This feature is more 
evident after week-2 when the weather prediction limit is 
reached. Correlation scores over the continents are generally 
low after week-2, though some models (especially coupled 
models, such as ECMWF) exhibit remarkable scores over 
the northernmost portion of northeast Brazil up to week-4 
during both extended seasons. This suggests that the rainy 
season over the northernmost portion of northeast Brazil 
(i.e., from March to July; Marengo and Bernasconi 2015) 
can potentially be predicted on the subseasonal time scale 
up to 4 weeks in advance. All models show for all weeks 
negligible correlation scores near subtropical dry zones over 
Africa, and the eastern Atlantic and eastern Pacific Oceans 
as also reported by Zhu et al. (2014) and Wheeler et al. 
(2017). Besides, in weeks 3–4 the correlation scores are con-
sistently high on the equatorial Pacific most likely related 
to the predictability provided by ENSO (Zhu et al. 2014; 
Li and Robertson 2015; Wheeler et al. 2017), particularly 
during its mature phase (Fig. 1). Most coupled models show 
moderate correlation scores over the tropical Indian Ocean 
and some regions of the Maritime Continent likely due to 
a better ability to predict the MJO evolution up to about 
3 weeks (Vitart 2017). Likewise, almost all models show 
correlation scores over the equatorial Atlantic Ocean resem-
bling the Intertropical Convergence Zone-like precipitation 
pattern (e.g., Schneider et al. 2014), which may be modu-
lated by ENSO (e.g., Marengo and Hastenrath 1993), MJO 
(e.g., Tomaziello et al. 2016), and the local cross-equatorial 
SST gradient (e.g., Chiang et al. 2002).

In the extratropical region, the week-2 correlation scores 
are more pronounced in the extended winter hemisphere 
when compared to the extended summer hemisphere (com-
pare Fig. 1 with the Online Resource 1—Fig. 1), likely due 
to the most prominent dynamics of teleconnections dur-
ing the winter period (e.g., Hoskins and Ambrizzi 1993; 
Ambrizzi et al. 1995; Grimm and Ambrizzi 2009). It is 

worth noting that even for the coupled models shown in the 
top seven rows of Fig. 1 (see also the Online Resource 1—
Fig. 1) the extratropical prediction ability in weeks 3–4 is 
low, especially on the continental areas, probably owing to 
the inherent unpredictability of the extratropical variability 
and model deficiencies in simulating land surface processes 
(e.g., Kumar et al. 2014) and tropical-extratropical inter-
actions, such as the Pacific-South American (PSA) pattern 
(e.g., Mo and Paegle 2001) and the Pacific-North American 
(PNA) pattern (e.g., Barnston and Livezey 1987), which can 
both be related to ENSO (e.g., Horel and Wallace 1981; Mo 
and Paegle 2001) and the MJO (e.g., Mo and Nogues-Paegle 
2005).

The contribution of ENSO and MJO to S2S models 
precipitation hindcast quality started with an evaluation 
of the observed relationship between indices representing 
these two phenomena and precipitation (Fig. 2). This figure 
shows the linear regression maps between GPCP weekly 
accumulated precipitation anomalies and weekly mean 
ENSO (Niño-3.4) and MJO (RMM1 and RMM2) indices 
for four weekly periods defined for each extended boreal 
winter month: days 1–7 (first period), 8–14 (second period), 
15–21 (third period), and 22–28 (fourth period). The regres-
sion analysis using RMM components showed a very similar 
feature independently of the used reanalysis dataset. Thus, 
for the sake of brevity, only results using ERA-Interim data 
are presented. The spatial pattern of Fig. 2a shows consistent 
ENSO characteristics with previous studies, such as opposite 
signals between the Maritime Continent and central-eastern 
equatorial Pacific (e.g., Kumar et al. 2013) and between 
northern and southeastern South America (e.g., Grimm and 
Ambrizzi 2009). Furthermore, coherent regression values 
are also noted over the tropical/subtropical Indian Ocean 
representing a basinwide pattern (e.g., Taschetto et al. 2011) 
and over the south/southeastern North America related to 
the PNA pattern activity (e.g., Horel and Wallace 1981; 
Coleman and Rogers 2003). The linear regression maps 
of Fig. 2b, c show MJO features manifested through oppo-
site signals between Maritime Continent and northeastern 
South America (e.g., Carvalho et al. 2004) for the RMM1 
index (Fig. 2b) and a dipole-like pattern between tropical 
Indian and west Pacific Oceans (e.g., Matthews 2008) for the 
RMM2 index (Fig. 2c). Significant regression values are also 
found in the extratropical region probably associated with 
barotropic Rossby wave propagation on the Pacific-North 
America and Pacific-South America sectors (e.g., Mo and 
Nogues-Paegle 2005). Similar linear regression maps were 
obtained for the extended boreal summer (Online Resource 
1—Fig. 2) consistent with ENSO and MJO-related variabil-
ity patterns previously identified (Li and Robertson 2015). 
All of these features indicate a considerable global corre-
spondence with the correlation assessment shown in Fig. 1 
and in the Online Resource 1—Fig. 1, particularly over the 

Fig. 1  Correlation between the ensemble mean and observed (GPCP) 
accumulated precipitation anomalies for each S2S model (rows) dur-
ing weeks 1–4 (columns) for hindcasts initialized from November to 
March over the 1999–2009 period. Correlation coefficients statisti-
cally significant at the 5% level are shaded

◂
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Fig. 2  Linear regression 
between GPCP weekly accu-
mulated precipitation anomalies 
and weekly mean of a Niño-3.4 
index and real-time multivariate 
MJO index (RMM) compo-
nents, b RMM1 and c RMM2 
with respect to reanalysis 
ERA-Interim, considering 
4 weekly periods for each 
extended boreal winter month 
(November–March) [days 1–7 
(first period), 8–14 (second 
period), 15–21 (third period), 
and 22–28 (fourth period)] over 
the 1999–2009 period. The grey 
shading highlights regression 
coefficients statistically signifi-
cant at the 5% level according 
to a two-sided Student’s t test. 
Contour interval is 3 mm/week 
with positive (negative) values 
in red (blue)
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tropical region. This correspondence suggests that ENSO 
and the MJO are relevant contributing phenomena for the 
identified S2S models prediction ability.

The S2S models hindcast quality was also investigated 
by removing ENSO and MJO projected linear regression 
patterns from the predicted fields. In this case, the result-
ing fields to be removed were obtained by regressing out 
the observed weekly mean indices with hindcasts weekly 
accumulated precipitation anomalies depending on both 
lead time and model start date. According to Fig. 3 (Online 
Resource 1—Fig. 3), which shows the correlation scores 
when the ENSO and MJO linear regression patterns were 
sequentially removed from the predicted fields, all S2S mod-
els show lower prediction ability over the tropical region 
when compared to Fig. 1 (Online Resource 1—Fig. 1). 
This holds true for all weeks and more pronouncedly for 
the extended boreal winter. During November–March, 
larger differences are noticed over the Maritime Continent, 
South America, and the eastern tropical Indian and central 
equatorial Pacific Oceans, which are regions influenced by 
ENSO and MJO activities (Fig. 2). Moreover, some regions 
are slightly modified by removing ENSO and MJO-related 
effects, notably east equatorial Pacific Ocean, west tropical 
Indian Ocean, and equatorial Atlantic Ocean. The hindcast 
quality over these almost unchanged tropical regions are 
likely modulated by other phenomena, for instance, east-
ern Pacific ENSO episodes (e.g., Tedeschi et al. 2013), the 
Indian Ocean Dipole (e.g., Saji et al. 1999), and the Atlan-
tic Meridional Dipole (e.g., Chiang and Vimont 2004). 
Although tropical correlation scores were clearly modi-
fied after removing ENSO and MJO precipitation patterns 
from the hindcasts, slightly changes are also revealed in the 
extratropics, particularly for weeks 1–2. This suggests that 
subseasonal hindcasts prediction ability over the extratropi-
cal region is likely modulated by teleconnections triggered 
by ENSO and MJO. Additional analyses were performed 
in order to investigate the individual contribution of ENSO 
and MJO on forecast quality by removing the linear regres-
sion patterns of each of these phenomena separately. In the 
tropics, the correlation scores over the central equatorial 
Pacific were found to be modulated by ENSO (Niño-3.4 
index) whilst over the tropical east Indian Ocean and the 
Maritime Continent/northeastern Brazil the modulation was 
evidenced through MJO phases corresponding to RMM2 
and RMM1 activity, respectively. In contrast, in the extrat-
ropics, for example over south Brazil, both phenomena are 
responsible to the modulation of the hindcast quality during 
the first 2 weeks of forecast (not shown).

In a regional scale over South America, several studies 
have shown that a prominent rainfall dipole pattern between 
the South Atlantic Convergence Zone (e.g., Cunningham and 
Cavalcanti 2006) and the subtropical region of southeastern 
South America generally affects the most densely populated 

areas in central-east, southeastern, and southern Brazil, 
Paraguay, Uruguay, and northeastern Argentina during the 
extended boreal winter (or austral summer) (e.g., Gonzalez 
and Vera 2014). As displayed in Fig. 1, for most models the 
South American rainfall dipole pattern is well represented 
in the first 2 weeks showing high correlation on both of its 
action centers. This feature is maintained by the ECMWF 
model up to week-3 likely due to a good MJO extended-
range prediction ability (Vitart 2017), as this phenomenon 
has influence on subseasonal precipitation variability over 
South America through tropics–tropics and tropics-extrat-
ropics teleconnections (Cunningham and Cavalcanti 2006; 
Grimm and Ambrizzi 2009). Besides, the regression map 
between GPCP weekly accumulated precipitation anoma-
lies and weekly means of the RMM1 component (Fig. 2b) 
reveals a spatial pattern over South America resembling the 
intraseasonal dipole pattern associated with the MJO activity 
(Gonzalez and Vera 2014). This result also shows that during 
the extended boreal winter part of the subseasonal precipita-
tion prediction ability over South America is related to MJO 
phases producing anomalous convective activity over the 
Maritime Continent (e.g., Carvalho et al. 2004; Cunning-
ham and Cavalcanti 2006), as pointed out in the previous 
discussion on Fig. 3. For week-4, the dipole-like correla-
tion pattern disappears and statistically significant scores are 
confined over the far north of South America in almost all 
models (particularly for the coupled models). This suggests 
the maintenance of prediction ability due to the effect of 
local SST anomalies (e.g., Chiang et al. 2002), as the influ-
ence of ENSO and MJO does not seem to impact hindcast 
quality in this region (compare Figs. 1, 3).

As mentioned in Sect. 2.3, the hidcast quality assessment 
may be sensitive to different ensemble sizes among mod-
els and this may affect model inter-comparison. In order 
to investigate this impact, Figs. 4 and 5 (Online Resource 
1—Figs. 4, 5) show correlation scores for hindcast pre-
cipitation anomalies using the 3M ensemble mean and the 
control member for each model. These figures reveal lower 
correlation scores using reduced ensemble sizes instead of 
full ensemble sizes (Fig. 1; Online Resource 1—Fig. 1), 
particularly for models with a larger number of perturbed 
members (ECMWF, BoM, and CNRM). This sensitivity 
level is more pronounced over the tropical region for the 
control member and even for models having the smallest 
ensemble size (UKMO and KMA). The hindcast quality 
increase with a larger ensemble size is also noticeable in 
the extratropics for the first 2 weeks. Curiously, the HMCR 
model has one of the largest numbers of perturbed members, 
but it does not show considerable hindcast quality difference 
when evaluated using reduced ensemble size as reported by 
Vitart (2017). Additionally, among the uncoupled models, 
the ECCC model shows the sharpest change in hindcast 
quality between the control member and the ensemble mean 



 F. M. de Andrade et al.

1 3



Global precipitation hindcast quality assessment of the Subseasonal to Seasonal (S2S)…

1 3

correlation scores during the first 2 weeks, indicating great 
sensitivity to the ensemble generation method even for a 
relatively small ensemble size (4 members).

Ranking models according to performance is challeng-
ing because the prediction ability varies depending on the 
geographic location, lead time, and ensemble size, as pre-
viously noted. However, a hindcast quality analysis based 
on the zonal average of anomaly correlation scores for dif-
ferent latitudinal bands can provide some insight in this 
aspect. Starting from the 80°S–80°N latitudinal band for 
all longitudes (global domain), Fig. 6 (Online Resource 1—
Fig. 6) shows that the ECMWF model presents the highest 
correlation scores for all 4 weeks when the ensemble mean 
is considered. The second place is shared by UKMO and 
KMA models until the CNRM model exceeds these mod-
els after week-3. During week-1, JMA and ECCC models 
show better performance (higher correlation scores) than 
some coupled models, but for some of these coupled mod-
els (CNRM, NCEP, and BoM) this ranking reverses as the 
lead time increases, particularly for weeks 3–4. On the other 
hand, CMA, ISAC, and HMCR models have the lowest cor-
relation scores for practically all lead times. This reflects 
the fact that some models (including the coupled models, 
such as CMA) seem not to benefit from ensemble forecasting 
(Vitart 2017). When considering only the control member 
or the 3M ensemble mean, the correlation score level vari-
ation among models is less pronounced and the top scores 
are now shared by ECMWF, UKMO, and KMA models, 
showing the importance of coupling the ocean with the 
atmosphere and refining the spatial resolution. Neverthe-
less, these ensemble size sampling place the CNRM and 
BoM coupled models at a worse ranking position when 
compared to the ensemble mean, particularly during the 
last 2 weeks, suggesting that its performance is improved 
when using a larger number of perturbed members. Again, 
CMA, ISAC, and HMCR models remain at the bottom of 
the rank in almost all weeks. Actually, the HMCR control 
member, 3M ensemble mean, and ensemble mean corre-
lation scores seem to be almost identical possibly due to 
problems of the HMCR perturbed hindcasts as described by 
Jie et al. (2017). Another important previously noted feature 
is the great decrease of the ECCC control member correla-
tion scores in weeks 1–2 when compared to the ensemble 
mean or even with the 3M ensemble mean. This is a strik-
ing feature because the other uncoupled models (JMA and 
HMCR) lack similar behavior. The 20°S-20°N latitudinal 
band for all longitudes (tropical domain) shows that the 
model’s rank is roughly unchanged in comparison to the 

global domain. However, correlation scores differences are 
noticed particularly because correlation scores level vari-
ations among models are more pronounced in the tropical 
domain. Two additional latitudinal bands in the extratropi-
cal domain (20°S–80°S and 20°N–80°N) for all longitudes 
were analyzed and the ECMWF model was identified as the 
top scoring model for the ensemble mean (not shown). This 
additional analysis also revealed very low and similar cor-
relation scores for almost all remaining models even when 
considering the ensemble mean (not shown).

Still regarding to the model’s rank, the assessment dis-
plays that the best ranking places are shared by coupled 
models with relatively finer spatial resolution, particularly 
after week-2. Nonetheless, the JMA model showed good 
performance for all weeks regardless of its uncoupled 
configuration. Therefore, the effect of using ocean–atmos-
phere coupling for improving subseasonal hindcast quality 
can be explored by investigating the relationship between 
weekly MJO and precipitation hindcast quality of coupled 
and uncoupled models with approximately similar spatial 
resolution (e.g., ECMWF and JMA). The computation of 
the MJO index for both observations and hindcasts follows 
the methodology previously described when evaluating the 
MJO contribution on hindcast quality (Sect. 2.4). The only 
difference is that the subtraction of the previous 120 day 
running mean from predicted fields was treated as follows. 
A combination of observed and hindcast information was 
used since the hindcasts for the previous 120 days of the 
initialization time are not available. In order to overcome 
this lack of information, observations of the 120 days prior 
to the model’s start dates were used to fill those days miss-
ing. Following Lin et al. (2008), the removal of the 120-day 
mean for the forecast at day n was computed by subtract-
ing the average of the 120 − n + 1 days of observational data 
preceding the forecast and the forecast data from day 1 to 
day n − 1. Again, the observed MJO index was fully evalu-
ated using ERA-Interim as verifying data since the sensi-
tivity level to the choice of reanalysis was minor providing 
very similar results for all investigated reanalysis datasets. 
Figure 7 (Online Resource 1—Fig. 7) shows scatter plots 
of weekly MJO bivariate correlation scores (Rashid et al. 
2011) and correlation scores of the weekly accumulated pre-
cipitation anomalies for the ensemble mean of ECMWF and 
JMA models for different selected regions. The same scatter 
plots were produced using the control member and the 3M 
ensemble mean revealing similar characteristics, but with 
lower prediction ability mainly for ECMWF (not shown). 
The ECMWF model shows a good correspondence between 
MJO and precipitation prediction ability, especially for tropi-
cal west Pacifc and central-east Indian Oceans where much 
of subseasonal precipitation variability can be explained by 
MJO propagation (Mo and Nogues-Paegle 2005). On the 
extratropics (southeastern United States and south Brazil), 

Fig. 3  Same as Fig.  1, except for removing the regression patterns 
between hindcast weekly accumulated precipitation anomalies and 
observed weekly mean Niño-3.4, RMM1, and RMM2 indices from 
hindcasts
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Fig. 4  Same as Fig. 1, except by using the ensemble mean of three ensemble members (referred to as the 3M ensemble mean)
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Fig. 5  Same as Fig. 1, except by using the single control member
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Fig. 6  Zonal average of correlation between hindcast and observed 
(GPCP) accumulated precipitation anomalies for different latitudinal 
bands [20°S–20°N (left column) and 80°S–80°N (right column)] dur-
ing weeks 1–4 (lead time) for hindcasts initialized from November to 

March over the 1999–2009 period considering the ensemble mean 
(upper row), three members ensemble mean (middle row), and con-
trol member (lower row)
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Fig. 7  Scatter plots between average precipitation correlation scores 
(GPCP × hindcasts) and MJO (RMM index) bivariate correlation for 
different spatial domains (shown in the top legend and bottom thumb-
nail image of each plotting) during weeks 1–4 (marker: square for 

week-1; triangle down for week-2; circle for week-3 and diamond for 
week-4) for hindcasts initialized from November to March over the 
1999–2009 period considering the ensemble mean of ECMWF (blue 
marker) and JMA (red marker) models
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this feature is less pronounced after week-2, but still shows 
better prediction ability association than JMA. Thus, the 
ocean–atmosphere coupling likely has an important contri-
bution for providing better subseasonal MJO and precipita-
tion prediction ability, particularly on the tropical region.

3.2  Systematic error assessment

The bias of the hindcast ensemble mean accumulated pre-
cipitation totals was evaluated for each S2S model (Fig. 8; 
Online Resource 1—Fig. 8). The bias is a measure of fore-
cast accuracy that summarises forecast deficiencies, such 
as overestimation or underestimation not revealed by the 
correlation coefficient. Globally, almost all models have 
a gradual bias increase from week-1 to week-4 in agree-
ment with the findings of Liang and Lin (2018) that also 
noted similar characteristics over East Asia using the ECCC 
model. Figure 8 (Online Resource 1—Fig. 8) shows that 
the tropical region has the largest biases, suggesting that 
these mean errors are likely related to model deficiencies 
in representing convective precipitation. Another discern-
ible aspect is that almost all models display larger positive 
biases (i.e., the mean prediction is on average larger than the 
mean observation) over the tropical oceans and larger nega-
tive biases (i.e., the mean prediction is on average smaller 
than the mean observation) over the continents and/or extra-
tropics than over other regions. These results should not be 
related to the ensemble size effect because for the other 
ensemble size sampling (control member and 3M ensem-
ble mean) the bias spatial pattern is overall similar to the 
bias spatial pattern of the ensemble mean, although slightly 
stronger signals are noticed over some tropical regions when 
considering the same ensemble size for all models in the 
bias assessment (not shown). Additionally, larger biases are 
noticed on the extended summer hemisphere, possibly owing 
to stronger convective activity (compare Fig. 8 with Online 
Resource 1—Fig. 8). Large positive biases are also noticed 
in the Eastern Hemisphere, particularly on the warm pool 
region, including the South Pacific Convergence Zone (Mat-
thews 2012) during November–March (Fig. 8) and the Asian 
monsoon region during May–September (Online Resource 
1—Fig. 8). Jie et al. (2017) also identified large precipita-
tion bias over south/southeast Asia, tropical Indian Ocean, 
Maritime Continent, and tropical west Pacific Ocean when 
analyzing 10 S2S models (except KMA). Moreover, the 
HMCR model shows negative biases around the Maritime 
Continent, differing from almost all other models. Thus, all 

the aforementioned features suggest the possibility of defi-
cient representation of tropical convection and the associ-
ated diabatic heating, leading to impacts on the subseasonal 
global precipitation hindcast quality. All these deficiencies 
are likely related to misrepresentation of atmospheric tel-
econnection patterns in models predictions.

Systematic errors can be further explored by examining 
how the predicted variance compares with the observed 
variance by computing the ratio of these quantities. As the 
ensemble mean of different perturbed members is known to 
reduce the variance (not shown), Fig. 9 (Online Resource 
1—Fig. 9) displays the variance ratio assessment using the 
control member of weekly accumulated precipitation anom-
alies for each S2S model. Similar to bias (Fig. 8; Online 
Resource 1—Fig. 8), almost all models have a gradual vari-
ability error increasing from week-1 to week-4. Some mod-
els (such as ECMWF, UKMO, KMA, and JMA) have the 
predicted variance close to the observed variance (i.e., a 
variance ratio close to 1) over a large portion of the global 
domain, especially during week-1. In contrast, CMA, ISAC, 
and HMCR models show one of the largest variance defi-
ciencies among the S2S models. The latter model also has 
reversed variance ratio characteristics over some regions, 
such as the Maritime Continent and the equatorial Pacific 
Ocean. Moreover, one can also notice large variance under-
estimation (i.e., the predicted variance is smaller than the 
observed variance) in the extratropical region and/or conti-
nental areas, and variance overestimation (i.e., the predicted 
variance is larger than the observed variance) over the tropi-
cal oceans, including dry zones over eastern Atlantic and 
eastern Pacific, North Africa, and east/southeast Asia near 
the Himalaya. These findings may be different for some 
models showing reversed or even miscellaneous signals 
over certain regions (e.g., compare ISAC model with BoM 
model).

3.3  Connections with the subseasonal atmospheric 
circulation hindcast quality

The previous two sections discussed different determinis-
tic metrics used to evaluate subseasonal precipitation hind-
casts produced by S2S models. The correlation assessment 
indicated that the predictive ability is larger for ECMWF, 
UKMO, and KMA than for the other models. The high-
est correlation scores of these three models could pos-
sibly be due to the fact that they are coupled models run 
at higher (more refined) spatial resolution. Furthermore, 
the highest correlation scores were located in the tropical 
region whereas the lowest scores were located in extrat-
ropical latitudes, particularly for forecasts after week-2. 
Positive biases were generally identified over the tropi-
cal oceans and negative biases over the continents and/
or extratropics, whilst prediction variance overestimation 

Fig. 8  Mean error (bias) of the ensemble mean accumulated precipi-
tation totals for each S2S model (rows) during weeks 1–4 (columns) 
for hindcasts initialized from November to March over the 1999–
2009 period. The bias was computed using GPCP data as observa-
tional reference. Unit: accumulated millimeter per week
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(underestimation) was identified on the tropical oceans 
(extratropical region and/or continental areas). There-
fore, these results suggest that the subseasonal forecast 
quality should be further explored through an analysis of 
the atmospheric circulation, with the aim of investigating 
S2S models ability in representing equatorial wave dynam-
ics and tropical-extratropical interaction, which may be 
related to global precipitation hindcast quality.

Figures 10 and 11 (Online Resource 1—Figs. 10, 11) 
display weekly 200 hPa ZSPSI and ZAPSI prediction qual-
ity metrics for the ensemble mean (linear correlation and 
bias) and control member (variance ratio) of 3 S2S mod-
els (ECMWF, BoM, and JMA). The 11 S2S models were 
analyzed but, for brevity, only the results of the 3 selected 
models are discussed to illustrate particularly the role of 
ocean–atmosphere coupling and spatial resolution. The 
sensitivity level regarding reanalysis choice was analyzed 
and the main difference was verified in the bias assessment 
with larger signals when using NCEP-DOE reanalysis 2, 
particularly for ZSPSI (not shown). Thus, only the results 
using ERA-Interim dataset are presented. In accordance with 
the previously examined precipitation correlation patterns, 
there are also higher correlation scores (Figs. 10, 11; Online 
Resource 1—Figs. 10, 11—item A) during the first 2 weeks, 
maintaining higher and meaningful signals mainly over the 
tropical region in the subsequent weeks. This feature was 
also identified by Liang and Lin (2018) in both real-time 
forecasts and hindcasts 500 hPa geopotential height from 
the ECCC prediction system. The correlation scores in 
week-2 are generally large in the Northern Hemisphere dur-
ing November–March (Figs. 10, 11—item A), suggesting 
a possible association with precipitation through telecon-
nections, such as the PNA pattern (e.g., Zhu et al. 2014). A 
similar feature is also identified in the Southern Hemisphere 
for hindcasts produced during May–September (Online 
Resource 1—Figs. 10, 11—item A), which highlights for 
some models large correlation scores on the Pacific-South 
America sector likely associated with the PSA pattern. For 
weeks 3–4, there is correspondence between the subseasonal 
precipitation and atmospheric circulation hindcast quality 
over the tropical region. This result indicates the ability 
of S2S models, particularly the coupled models with finer 
spatial resolution (ECMWF), to represent the connections 
between tropical rainfall and equatorially-trapped wave dis-
persion, such as Kelvin and Rossby baroclinic waves (e.g., 
Kiladis et al. 2009). All of these atmospheric circulation 
aspects are more pronounced when removing the zonal mean 

of stream function (ZAPSI), particularly over the extratropi-
cal region.

During the first 2 weeks, model resolution seems to have 
a relevant contribution to hindcast quality. For example, 
while the JMA model performs better than the low reso-
lution BoM model, it performs worse than the ECMWF 
model, which has higher spatial resolution than JMA and 
BoM models. According to Vitart (2017), higher resolution 
S2S models tend to produce more realistic teleconnections, 
at least until week-2. In contrast, in weeks 3–4 the best per-
forming models are the coupled models independently of 
spatial resolution.The analysis for the control member or 
the 3M ensemble mean is very similar to the ensemble mean 
analysis for week-1, but is considerably weaker in the subse-
quent weeks, especially when using the control member over 
the extratropical region for models with large ensemble size 
such as the BoM model (not shown). This result suggests 
the importance of using ensemble predictions for improving 
subseasonal atmospheric circulation hindcast quality.

As depicted by the correlation scores, the best sub-
seasonal atmospheric circulation hindcast quality after 
week-2 is located over the tropical region likely due to the 
medium-range predictability barrier that exists in extratropi-
cal weather forecasting. Items B and C in Figs. 10 and 11 
(Online Resource 1—Figs. 10, 11) show atmospheric cir-
culation hindcast systematic errors for ECMWF, BoM, and 
JMA models. As for the mean errors (biases), again it is 
noteworthy that model resolution has a great impact on hind-
cast quality, with higher resolution models (ECMWF and 
JMA) generally showing lower mean errors even for uncou-
pled models such as the JMA model. This is an intriguing 
feature which deserves additional investigation.

Item B of Figs. 10 and 11 (Online Resource 1—Figs. 10, 
11) shows that the most pronounced mean errors generally 
increase over the tropical region after week-1, and reach the 
extratropics after week-2. The latter is more pronounced in 
the extended winter hemisphere (compare Figs. 10, 11 with 
Online Resource 1—Figs. 10, 11—item B) for the lowest 
spatial resolution model (i.e., BoM). Furthermore, the larg-
est extratropical errors resemble the PNA pattern during 
the extended boreal winter (Figs. 10, 11—item B) and the 
PSA pattern during the extended boreal summer (Online 
Resource 1—Figs. 10, 11—item B), when the teleconnec-
tions are more pronounced due to more favorable basic state 
configurations (e.g., Hoskins and Ambrizzi 1993; Ambrizzi 
et al. 1995; Grimm and Ambrizzi 2009). These results are 
more evident for ZAPSI and are consistent with the global 
atmospheric circulation response to tropical diabatic heat-
ing, which establishes within a week for convectively cou-
pled equatorial waves dispersion and in an additional week 
for extratropical Rossby waves propagation (e.g., Jin and 
Hoskins 1995; Seo and Son 2012). These dynamic pat-
terns are most likely related to tropical precipitation biases 

Fig. 9  Variance ratio of the control member accumulated precipita-
tion anomalies for each S2S model (rows) during weeks 1–4 (col-
umns) for hindcasts initialized from November to March over the 
1999–2009 period. The variance ratio was computed using GPCP 
data as observational reference
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Fig. 10  200  hPa ZSPSI prediction quality metrics for the ensem-
ble mean [rows: item A—correlation of anomalies; item B—bias of 
totals (unit:  106 m2/s)] and control member (item C—variance ratio 
of anomalies) for three S2S models (ECMWF, BoM, and JMA) with 

respect to ERA-Interim reanalysis during weeks 1–4 (columns) for 
hindcasts initialized from November to March over the 1999–2009 
period. Correlation coefficients statistically significant at the 5% level 
are shaded
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(Fig. 8; Online Resource 1—Fig. 8), which disturb latent 
heat release and consequently the Hadley and Walker cir-
culations that may be responsible for triggering the telecon-
nections (e.g., Grimm and Ambrizzi 2009). Corresponding 

to the previously discussed precipitation biases, the 200 hPa 
ZSPSI and ZAPSI mean biases of the control member and 
the 3M ensemble mean are overall similar to those of the 
all ensemble members, but the two smallest ensemble size 

Fig. 11  Same as Fig. 10, except for 200 hPa ZAPSI
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samplings generally have slightly larger errors (not shown). 
The 200 hPa ZSPSI and ZAPSI anomalies variance ratio are 
approximately similar showing larger variability deficien-
cies after week-1 especially for BoM model (Figs. 10, 11; 
Online Resource 1—Figs. 10, 11—item C), which can be 
associated with precipitation variance ratio (Fig. 9; Online 
Resource 1—Fig. 9).

4  Summary and discussion

The subseasonal global precipitation hindcast quality was 
evaluated using all models participating in the WWRP/
WCRP S2S prediction project. This unprecedented com-
parative analysis provided a unique opportunity for improv-
ing the current knowledge about the ability of these models 
in representing precipitation variability at the weekly time 
scale and the mechanisms behind the sources of subsea-
sonal predictability, elucidating possible shortcomings in 
S2S ensemble prediction systems. Different deterministic 
forecast quality metrics (linear correlation, bias, and vari-
ance ratio) were employed for verifying precipitation hind-
casts anomalies in 4 consecutive weeks (weeks 1–4) during 
two contrasting extended seasons (November–March and 
May–September) over the 1999–2009 common period. The 
quality of the ensemble mean (computed by considering all 
ensemble size of each model) was contrasted to the quality 
of the ensemble size sampling using the same number of 
members for each model [i.e., the single control member 
and three members ensemble mean (referred to as the 3M 
ensemble mean)] in order to assess the importance of ensem-
ble prediction.

All models showed higher correlation in week-1, with 
rapid scores decrease in the following weeks, maintain-
ing meaningful scores mainly in the tropical region. This 
hindcast quality in the tropics was identified to be related 
to ENSO and the MJO by removing their linearly regressed 
precipitation patterns from predicted fields. Both phenom-
ena have been found to be providing potential information 
for predicting subseasonal precipitation with S2S models, 
particularly during November–March over the Maritime 
Continent, the northeastern/south Brazil, and the eastern 
tropical Indian and central equatorial Pacific Oceans, which 
are regions influenced by ENSO and MJO activities. For 
weeks 3–4, the extratropical correlation scores were found 
to be low, especially on the continental areas, likely due to 
the inherent unpredictability of the extratropical variability, 
and to model deficiencies in simulating tropical-extratrop-
ical interactions (e.g., PNA and PSA teleconnection pat-
terns) and land surface processes. It was noted that when 
the control member or the 3M ensemble mean were used 
the correlation scores were considerably reduced for mod-
els with a larger number of ensemble members (ECMWF, 

BoM and CNRM), demonstrating the relevance of using 
perturbed ensemble members for improving hindcast qual-
ity. The model’s rank was outlined through a hindcast qual-
ity analysis in different latitudinal bands by computing the 
zonal average of anomaly correlation scores. In general, the 
best scores were found over the tropical region and the rank-
ing was roughly unchanged when compared to the global 
domain, indication that the ECMWF model has the highest 
scores in all weeks followed by UKMO and KMA mod-
els, especially for the ensemble mean. This result indicates 
that some models were benefited from being coupled and 
having refined spatial resolution, although some uncoupled 
models (JMA and ECCC) also presented good ranking per-
formance (i.e., higher scores than lower resolution coupled 
models, such as BoM) at least until week-2. On the other 
hand, the lowest correlation scores were shared by CMA, 
ISAC, and HMCR models during almost all weeks, sug-
gesting that these models have larger deficiencies than the 
other S2S models here investigated. The contribution of 
ocean–atmosphere coupling was assessed by examining the 
relationship between MJO and precipitation hindcast qual-
ity for coupled and uncoupled models with approximately 
similar spatial resolution (ECMWF and JMA). This relation-
ship was found to be stronger for ECMWF model, indicating 
the importance of coupling for producing improved quality 
subseasonal MJO and precipitation hindcasts, particularly 
on the tropical region.

Systematic errors were also analyzed, elucidating defi-
ciencies in the S2S prediction systems. The bias assessment 
revealed a gradual increase of this measure from week-1 to 
week-4, with the largest values concentrated over the tropics, 
possibly due to model deficiencies in representing convec-
tive precipitation. This hypothesis is plausible because the 
ECMWF model showed one of the lowest tropical biases 
likely due to model physics improvements implemented 
over the past years, especially in convective parameteriza-
tion as highlighted in Vitart (2017). Nonetheless, additional 
analysis is essential to precisely identify which aspect of 
the ECMWF prediction system (e.g., initialization, model 
physics, model resolution, ensemble generation method, and 
ensemble size) contributed for its improved performance. 
Another remarkable feature presented by most models was 
the manifestation of large positive biases over the tropical 
oceans and large negative biases over the continents and/
or extratropics. Furthermore, the performed variance ratio 
assessment provided a new insight about possible failures 
in a given S2S model in representing subseasonal (weekly) 
precipitation variability. In general, this assessment indi-
cated overestimation (underestimation) of the variance of 
the control member in the tropical (extratropical and/or con-
tinental) regions.

As subseasonal precipitation hindcast quality is 
expected to be related to the models ability in representing 
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atmospheric circulation, we also investigated how S2S mod-
els represented the equatorial wave dynamics and tropical-
extratropical interactions. Hindcasts of zonally symmetric 
(ZSPSI) and asymmetric (ZAPSI) streamfunction at 200 hPa 
were analyzed for three models (ECMWF, BoM, and JMA) 
for assessing the role played by ocean–atmosphere coupling 
and model resolution in simulating global atmospheric cir-
culation. As for precipitation, for all models the circulation 
correlation scores were found to be higher during the first 
week, dropping in most regions in the subsequent weeks, 
maintaining meaningful signals mainly over the tropi-
cal region. During the first 2 weeks, the model resolution 
showed to have a more relevant contribution to hindcast 
quality, with higher resolution models (ECMWF and JMA) 
producing more realistic teleconnections. On the other hand, 
for weeks 3–4 the coupled models (ECMWF and BoM) 
showed the highest correlation scores independently of spa-
tial resolution. For almost all models, the circulation bias 
increased over the tropical region after week-1 and gradually 
reached the extratropics after week-2, in particular for the 
lowest resolution model (BoM) during the extended winter 
hemisphere when the teleconnections are generally more 
pronounced. It is hyphothesized that these dynamic pat-
terns are related to the identified systematic errors (bias and 
variance ratio) of tropical precipitation that may affect both 
tropical and extratropical atmospheric circulation.

This study was restricted to a deterministic hindcast 
quality assessment due to the limited number of available 
perturbed ensemble members of some S2S models. In the 
future, when more S2S models start producing hindcasts 
with a large number of perturbed ensemble members it will 
be possible to perform a similar comparative assessment 
as performed here using a probabilistic approach. Besides, 
multi-model ensemble prediction has been recognized as 
a more robust procedure than the single model ensemble 
prediction (e.g., Hagedorn et al. 2005). Again, when S2S 
models hindcasts start to be produced in a more harmonized 
way, particularly in terms of consistency between initializa-
tion dates, it will be possible to start developing procedures 
for combining and calibrating subseasonal forecast informa-
tion from a large number of models. An initial step in this 
direction has recently been given by Vigaud et al. (2017a, 
b) using a selection of 3 S2S models. Moreover, a more 
detailed assessment including the combined ENSO-MJO 
effect on subseasonal precipitation hindcast quality should 
help improve the current understanding of subseasonal pre-
dictability mechanisms as ‘‘windows of opportunity’’ (i.e., 
periods of potential increase in hindcast quality) can exist as 
a function of ENSO and the MJO activity (Li and Robertson 
2015; Liang and Lin 2018). Finally, an evaluation regard-
ing the contribution of other climate drivers (such as the 
Indian Ocean Dipole and the Atlantic Meridional Dipole) 
and additional sources of subseasonal predictability (such 

as land–atmosphere coupling and stratosphere-troposphere 
interaction) to S2S models prediction skill is left for future 
work.
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